论文标题
单个介质语音模式的热力学
Thermodynamics of a Single Mesoscopic Phononic Mode
论文作者
论文摘要
近几十年来,在随机热力学和对介质系统进行的最先进的实验领域内,热力学定律已被推到越来越小的尺度。这些测量值涉及电子,光子和介绍机械对象。在这里,我们报告了单个机械模式与热储层之间平衡的热波动的测量。所研究的设备是一种纳米力学束,其首次弯曲在3.8MHz处共鸣,冷却至100MK至400MK的温度。该技术是使用低温高电子迁移式晶体管围绕微波光学机械设置构建的,并基于以串联实施的两个参数放大为基础:一个内置的光学机电“蓝色播放”泵送的“蓝色泵”,再加上行动波参数放大器阶段。我们证明了我们实时解决机械模式的能量波动的能力,直到机械放松速率给出的最快相关速度。然后,能量概率分布是指数级的,与预期的玻尔兹曼分布匹配。发现波动的差异为$(k_b t)^2 $,没有免费参数。我们的微波检测地板约为6GHz时的3个标准量子极限;我们最快的采集轨道的分辨率达到了约100个声子,并且与设备的光学机械耦合相当差($ g_0/2π\约0.5〜 $ Hz)。该结果深入了经典制度,但将来应扩展到量子案例,系统的$ G_0 $(最高$2π\ times 250〜 $ Hz)可能会达到单个机械量子的分辨率。我们认为,它将打开一个新的实验领域:基于声子的量子随机热力学,对量子热传输和宏观机械量子相干性具有根本性。
In recent decades, the laws of thermodynamics have been pushed down to smaller and smaller scales, within the field of stochastic thermodynamics and state-of-art experiments performed on mesoscopic systems. These measurements concern electrons, photons, and mesoscopic mechanical objects. Here we report on the measurements of thermal fluctuations of a single mechanical mode in-equilibrium with a heat reservoir. The device under study is a nanomechanical beam with a first flexure resonating at 3.8MHz, cooled down to temperatures in the range from 100mK to 400mK. The technique is constructed around a microwave opto-mechanical setup using a cryogenic High Electron Mobility Transistor, and is based on two parametric amplifications implemented in series: an in-built opto-mechanical 'blue-detuned' pumping plus a Traveling Wave Parametric Amplifier stage. We demonstrate our ability to resolve energy fluctuations of the mechanical mode in real-time up to the fastest relevant speed given by the mechanical relaxation rate. The energy probability distribution is then exponential, matching the expected Boltzmann distribution. The variance of fluctuations is found to be $(k_B T)^2$ with no free parameters. Our microwave detection floor is about 3 Standard Quantum Limit at 6GHz; the resolution of our fastest acquisition tracks reached about 100 phonons, and is related to the rather poor opto-mechanical coupling of the device ($g_0/2π\approx 0.5~$Hz). This result is deeply in the classical regime, but shall be extended to the quantum case in the future with systems presenting a much larger $g_0$ (up to $2π\times 250~$Hz), potentially reaching the resolution of a single mechanical quantum. We believe that it will open a new experimental field: phonon-based quantum stochastic thermodynamics, with fundamental implications for quantum heat transport and macroscopic mechanical quantum coherence.