论文标题
关于代数扩展和超级场的代数关闭
On algebraic extensions and algebraic closures of superfields
论文作者
论文摘要
在最近的结果中,我们将代数扩展的基本理论扩展到超级场地的领域 - 具有多价和产品的领域,这表明每个超场都有一个(唯一到同构)强代代数扩展到代数封闭的超级场。此外,我们表明,每个无限代数封闭的超级场能都允许量化剂消除程序。
Building over recent results, we expand the basic theory of algebraic extensions to the realm of superfields -a field with multivalued sum and product-, showing that every superfield has a (unique up to isomorphism) strong algebraic extension to a superfield that is algebraically closed. Moreover we show that every infinite algebraically closed superfield admits quantifier elimination procedure.