论文标题
$ j $ - 全态浸入
$J$-equations on holomorphic submersions
论文作者
论文摘要
在本文中,我们证明,如果存在纤维和底座上的$ j $平等的解决方案,则存在$ j $ equ的解决方案。该方法是绝热极限技术。我们还部分证明了相反的意义。更确切地说,如果总空间为$ j $ -nef,则每根光纤为$ j $ -nef。此外,如果每根光纤都有$ j $ equ的解决方案,则基数也为$ j $ -nef。
In this paper, we prove that there exists a solution of the $J$-equation on a total space of a holomorphic submersion if there exist solutions of the $J$-equation on fibres and a base. The method is an adiabatic limit technique. We also partially prove the converse implication. More precisely, if a total space is $J$-nef, then each fibre is $J$-nef. In addition, if each fibre has a solution of the $J$-equation, then a base is also $J$-nef.