论文标题
饮食:有条件的独立性测试,具有边际依赖性量的剩余信息
DIET: Conditional independence testing with marginal dependence measures of residual information
论文作者
论文摘要
有条件的随机化测试(CRTS)评估了一个变量$ x $是否可以预测另一个变量$ y $,并且观察到了协变量$ z $。 CRT需要拟合大量的预测模型,这通常在计算上棘手。降低CRT成本的现有解决方案通常将数据集分为火车和测试部分,或者依靠启发式方法进行互动,这两者都会导致功率损失。我们提出了分离的独立测试(饮食),该算法通过利用边际独立性统计数据来测试条件独立关系来避免这两个问题。饮食测试两个随机变量的边际独立性:$ f(x \ id z)$和$ f(y \ mid z)$,其中$ f(\ cdot \ cdot \ mid z)$是有条件的累积分配功能(CDF)。这些变量称为“信息残差”。我们为饮食提供了足够的条件,以实现有限的样本类型1误差控制和功率大于1型错误率。然后,我们证明,在使用信息残差作为测试统计数据之间的相互信息时,饮食会产生最强大的有条件测试。最后,我们显示出比几个合成和真实基准的其他可处理的CRT的饮食能力更高。
Conditional randomization tests (CRTs) assess whether a variable $x$ is predictive of another variable $y$, having observed covariates $z$. CRTs require fitting a large number of predictive models, which is often computationally intractable. Existing solutions to reduce the cost of CRTs typically split the dataset into a train and test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We propose the decoupled independence test (DIET), an algorithm that avoids both of these issues by leveraging marginal independence statistics to test conditional independence relationships. DIET tests the marginal independence of two random variables: $F(x \mid z)$ and $F(y \mid z)$ where $F(\cdot \mid z)$ is a conditional cumulative distribution function (CDF). These variables are termed "information residuals." We give sufficient conditions for DIET to achieve finite sample type-1 error control and power greater than the type-1 error rate. We then prove that when using the mutual information between the information residuals as a test statistic, DIET yields the most powerful conditionally valid test. Finally, we show DIET achieves higher power than other tractable CRTs on several synthetic and real benchmarks.