论文标题
利用单位折叠的汉密尔顿人的小型量子计算机
Leveraging small scale quantum computers with unitarily downfolded Hamiltonians
论文作者
论文摘要
在这项工作中,我们提出了一种基于驱动的相似性重新归一化组(QDSRG)的量子统一性的形式主义,该形式可能与嘈杂和耐断层硬件的量子算法结合使用。 QDSRG是一种经典的多项式下降折叠方法,避免评估昂贵的三体和更高体型降低的密度矩阵,同时保留经典多体性多体理论的准确性。我们在几个具有挑战性的化学问题上校准和测试QDSRG,并提出了避免在QDSRG方案中避免经典指数规模步骤的策略。我们使用IBM量子设备上的变异量子本层对两个化学系统进行了QDSRG计算:i)使用Quintuple- $ζ$基础和ii)h $ _2 $的解离曲线和ii)二氯丁烷异构化对$ trans $ - butatadiene的反应,表明对问题的降低,表明需要几个qubits n quit qubits。我们的工作表明,QDSRG是一种可行的方法,用于利用近期量子设备来准确估算分子特性。
In this work, we propose a quantum unitary downfolding formalism based on the driven similarity renormalization group (QDSRG) that may be combined with quantum algorithms for both noisy and fault-tolerant hardware. The QDSRG is a classical polynomially-scaling downfolding method that avoids the evaluation of costly three- and higher-body reduced density matrices while retaining the accuracy of classical multireference many-body theories. We calibrate and test the QDSRG on several challenging chemical problems and propose a strategy for avoiding classical exponential-scaling steps in the QDSRG scheme. We report QDSRG computations of two chemical systems using the variational quantum eigensolver on IBM quantum devices: i) the dissociation curve of H$_2$ using a quintuple-$ζ$ basis and ii) the bicyclobutane isomerization reaction to $trans$-butadiene, demonstrating the reduction of problems that require several hundred qubits to a single qubit. Our work shows that the QDSRG is a viable approach to leverage near-term quantum devices for the accurate estimation of molecular properties.