论文标题

跨相似解剖结构的域自适应分割的对比度半监督学习

Contrastive Semi-supervised Learning for Domain Adaptive Segmentation Across Similar Anatomical Structures

论文作者

Gu, Ran, Zhang, Jingyang, Wang, Guotai, Lei, Wenhui, Song, Tao, Zhang, Xiaofan, Li, Kang, Zhang, Shaoting

论文摘要

卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释的数据集来协助培训,有可能改善模型的性能。然而,由于外观不同,甚至来自目标结构的成像方式,跨解剖结构域的变化进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应性(CS-CADA)的对比度半监督学习,该学习适应一个模型,该模型可以通过利用源域中相似结构的一组现有注释图像来利用目标域中的目标域中的相似结构。我们使用特定领域的批归归量表(DSBN)将两个解剖结构域的特征图归一化,并提出了跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均匀老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在X射线图像中准确地分割了X射线动脉的精确分割,分别在视网膜血管图像和心脏MR图像的帮助下,仅在目标域中只有少量的注释。

Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for medical image segmentation, yet need plenty of manual annotations for training. Semi-Supervised Learning (SSL) methods are promising to reduce the requirement of annotations, but their performance is still limited when the dataset size and the number of annotated images are small. Leveraging existing annotated datasets with similar anatomical structures to assist training has a potential for improving the model's performance. However, it is further challenged by the cross-anatomy domain shift due to the different appearance and even imaging modalities from the target structure. To solve this problem, we propose Contrastive Semi-supervised learning for Cross Anatomy Domain Adaptation (CS-CADA) that adapts a model to segment similar structures in a target domain, which requires only limited annotations in the target domain by leveraging a set of existing annotated images of similar structures in a source domain. We use Domain-Specific Batch Normalization (DSBN) to individually normalize feature maps for the two anatomical domains, and propose a cross-domain contrastive learning strategy to encourage extracting domain invariant features. They are integrated into a Self-Ensembling Mean-Teacher (SE-MT) framework to exploit unlabeled target domain images with a prediction consistency constraint. Extensive experiments show that our CS-CADA is able to solve the challenging cross-anatomy domain shift problem, achieving accurate segmentation of coronary arteries in X-ray images with the help of retinal vessel images and cardiac MR images with the help of fundus images, respectively, given only a small number of annotations in the target domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源