论文标题

通过动力学系统的不变功能的深度神经网络近似

Deep Neural Network Approximation of Invariant Functions through Dynamical Systems

论文作者

Li, Qianxiao, Lin, Ting, Shen, Zuowei

论文摘要

我们研究了使用动力学系统的流量图相对于输入指数的某些置换的函数的近似值。这种不变的功能包括涉及图像任务的经过研究的翻译不变性功能,但还包含许多在科学和工程中找到新兴应用程序的置换不变函数。我们证明了通过受控的模糊动态系统通用这些函数的足够条件,可以将其视为具有对称约束的深度残留网络的一般抽象。这些结果不仅意味着用于对称函数近似的各种常用神经网络体系结构的通用近似,而且还指导设计涉及新对称要求的应用的架构设计。

We study the approximation of functions which are invariant with respect to certain permutations of the input indices using flow maps of dynamical systems. Such invariant functions includes the much studied translation-invariant ones involving image tasks, but also encompasses many permutation-invariant functions that finds emerging applications in science and engineering. We prove sufficient conditions for universal approximation of these functions by a controlled equivariant dynamical system, which can be viewed as a general abstraction of deep residual networks with symmetry constraints. These results not only imply the universal approximation for a variety of commonly employed neural network architectures for symmetric function approximation, but also guide the design of architectures with approximation guarantees for applications involving new symmetry requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源