论文标题
Lee-Yang-Yang旋转轨道耦合的Bose-Einstein冷凝物中量子孤子的动力学
Dynamics of quantum soliton in Lee-Huang-Yang spin-orbit coupled Bose-Einstein condensates
论文作者
论文摘要
我们介绍了仅是由于在一个维度中旋转轨道耦合二元bose-enstein凝结物中出现超出平均场量子波动而产生的自限基态的结构和动力学的数值结果。根据自旋obit(So)和拉比耦合,我们观察到基态表现出量子般的(平面)或量子条纹的孤子性质。我们找到了一种用于非零的分析孤子解决方案,因此耦合与数值结果非常匹配。此外,我们通过采用三个协议来研究这些孤子的动态稳定性,例如(i)在每个组件中添加初始速度,(ii)在初始和有限的时间淬灭SO和RABI耦合参数,以及(iii)允许通过给出同等的和相反方向速度在两个旋转组件之间碰撞。观察到孤子的许多有趣的动力学特征,例如,在时间和时空中,多碎片,排斥和呼吸。对于给定的Rabi耦合频率,孤子的呼吸频率随着如此耦合的增加而增加,在临界耦合处达到最大值,而从明亮的条纹旋转孔的相位耦合。我们观察到,最大呼吸频率用指数$ \ sim 0.16 $表现出对狂犬耦合频率的功率定律依赖性。
We present the numerical results of the structure and dynamics of the self-bound ground state arising solely because of the presence of beyond mean field quantum fluctuation in spin-orbit coupled binary Bose-Einstein condensates in one dimension. Depending upon spin-obit (SO) and Rabi couplings, we observe that the ground state exhibits either quantum-bright (plane) or quantum-stripe soliton nature. We find an analytical soliton solution for non-zero SO coupling that matches quite well with the numerical results. Further, we investigate the dynamical stability of these solitons by adopting three protocols, such as (i) adding initial velocity to each component, (ii) quenching the SO and Rabi coupling parameters at initial and finite time, and (iii) allowing collision between the two spin-components by giving equal and opposite direction velocity to them. Many interesting dynamical features of the solitons, like, multi-fragmented, repelling, and breathing in time and space-time, are observed. For given Rabi coupling frequency, the breathing frequency of the soliton increases upon the increase in SO coupling, attaining a maximum at the critical SO coupling where the phase transition from the bright to stripe soliton occurs. We observe that the maximum breathing frequency exhibits power law dependence on the Rabi coupling frequency with an exponent $\sim 0.16$.