论文标题

新物理学家的旧观念:1

Old Ideas for New Physicists:1

论文作者

Banks, T.

论文摘要

我们审查并澄清了许多年前提出的关于在全息框架中理解宇宙学的想法。基本策略是使用jacobson的\ cite {ted95}识别爱因斯坦方程,并用“区域= 4熵”定律的因果钻石来识别一个量子系统,其流体动力学与给定时空相匹配。这可以完全适用于具有任何正宇宙常数的系统,该系统均可饱和。量子系统是(截止)$ 1+1 $尺寸CFTS的序列,中央电荷与沿FRW Geodesic的因果钻石的熵成正比。这与最近的\ cite {bz}的提议相匹配,即任何因果钻石的模块化汉密尔顿均可添加到非阴性C.C.是这样的CFT的$ L_0 $发电机。当De Sitter Era之后是地平线的缓慢膨胀时,不相交的地平线(它们是永恒的DS空间中的量规副本,但由于地平线的缓慢膨胀而变得物理)表示是在后时代的黑洞稀释气体。单个黑洞的熵波动表现为CMB波动,并且张量/标量比受到慢速参数$ε$的额外因素的抑制。黑洞蒸发提供了热爆炸和男性生成。黑洞合并可以轻松地提供原始BH暗物质的来源,该暗物质在$ 1 $ EV的温度下占主导地位,但是需要数值模拟来确定该模型是否可以解释我们宇宙中的实际暗物质。

We review and clarify ideas proposed many years ago for understanding cosmology in a holographic framework. The basic strategy is to use Jacobson's\cite{ted95} identification of Einstein's equations with the hydrodynamic equations of the "Area = 4 Entropy" law for causal diamonds, to identify a quantum system whose hydrodynamics match those of a given space-time. This can be done exactly for a system with any positive cosmological constant, which saturates the entropy bound for all times. The quantum system is a sequence of (cut-off) $1+1$ dimensional CFTs, with central charge proportional to the entropy in causal diamonds along an FRW geodesic. This matches with a recent\cite{BZ} proposal that the modular Hamiltonian of any causal diamond for non-negative c.c. is the $L_0$ generator of such a CFT. When an early de Sitter era is followed by slow roll expansion of the horizon, disjoint horizon volumes (which are gauge copies in an eternal dS space, but become physical due to slow roll expansion of the horizon area) manifest as a dilute gas of black holes in a post-inflationary era. Entropy fluctuations of individual black holes manifest as CMB fluctuations, and the tensor/scalar ratio is suppressed by an extra factor of the slow roll parameter $ε$. Black hole evaporation provides the Hot Big Bang and baryogenesis. Black hole mergers can easily provide a source of primordial BH dark matter that dominates radiation at a temperature of $1$ eV, but numerical simulations are required to determine whether the model can explain the actual dark matter in our universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源