论文标题
弦理论中的渐近标量场宇宙学
Asymptotic Scalar Field Cosmology in String Theory
论文作者
论文摘要
在字符串理论中,渐近(晚期)宇宙学取决于标量场空间的渐近(无限距离)极限。此类限制具有指数衰减的潜在$ v \ sim \ ex \ exp( - c ϕ)$,具有相应的哈勃尺度$ h \ sim \ sim \ sqrt {\ dot ϕ^2 + 2 V} \ sim \ sim \ sim \ sim \ exp(-λ_hϕ)$,至少是$ m \ sim $ m \ sim simes $ s sim simes $ s sim simes \ sims \ sims \ simes unight( - - λ_Hϕ)$( - - 在本文中,我们提供了证据表明,这些系数满足$ \ sqrt {(d-1)/(d-2)/(d-2)} \geqλ_h\ geq geqλ_ {\ text {lightest}} \ geq 1/\ geq 1/\ sqrt {d-d-2 $ $λ_ {\ text {lightest}} $是最轻塔的$λ$系数。这意味着,在最近的时候,随着标量场升至$ ϕ \ rightarrow \ infty $,低能量理论仍然是$ d $维的FRW宇宙学,并随着距离的扩张而下降,由距离猜想预测的颗粒颗粒的轻塔仍然处于越高或高于范围的尺度上,并且两者都保持在庞大的能量状态,并且在强大的能量条件下,并且满足了统治能量和统治能量。
Asymptotic (late-time) cosmology depends on the asymptotic (infinite-distance) limits of scalar field space in string theory. Such limits feature an exponentially decaying potential $V \sim \exp(- c ϕ)$ with corresponding Hubble scale $H \sim \sqrt{\dot ϕ^2 + 2 V} \sim \exp(- λ_H ϕ)$, and at least one tower of particles whose masses scale as $m \sim \exp( - λϕ)$, as required by the Distance Conjecture. In this paper, we provide evidence that these coefficients satisfy the inequalities $\sqrt{(d-1)/(d-2)} \geq λ_H \geq λ_{\text{lightest}} \geq 1/\sqrt{d-2}$ in $d$ spacetime dimensions, where $λ_{\text{lightest}}$ is the $λ$ coefficient of the lightest tower. This means that at late times, as the scalar field rolls to $ϕ\rightarrow \infty$, the low-energy theory remains a $d$-dimensional FRW cosmology with decelerated expansion, the light towers of particles predicted by the Distance Conjecture remain at or above the Hubble scale, and both the strong energy condition and the dominant energy condition are satisfied.