论文标题

在需求不确定性的最后一英里无人机交付中的动态订单履行

Dynamic Order Fulfillment in Last-Mile Drone Delivery under Demand Uncertainty

论文作者

Shi, Linxuan, Xu, Zhengtian, Lejeune, Miguel, Luo, Qi

论文摘要

由于其潜力可显着降低成本并提高运营灵活性,尤其是在传统的卡车运送效率低下的地区,因此无人机引起了对最后一英里交付的日益增长的兴趣。本文解决了一家零售商在随机到达的服务交付请求下,零售商面临的动态订单履行问题。这些交付请求可能会因包装配置文件,交货地点和紧迫性而有所不同。我们采用滚动摩托车框架来实现订单,并设计了一个两阶段的随机计划,旨在战略性地管理现有订单,同时考虑受各种不确定性的传入请求。部署设想的两阶段模型的一个重大挑战在于其纳入车辆路由约束,在这些约束上,精确或蛮力的方法在计算上效率低下,不适合实时操作决策。为了解决这个问题,我们提出了一种加速的L形算法,该算法(i)降低了树枝的大小,(ii)用启发式估计来代替精确的第二阶段溶液,(iii)适应了添加最佳性削减的交替策略。拟议的启发式表明,与确切方法相比,表现出色的性能优势,在平均运行时降低了20倍,同时保持平均最佳差距小于1 \%。我们将算法应用于多种实例,以评估使用随机模型推迟批处理服务的好处。我们的结果表明,当明确考虑需求不确定性以实现履行决定时,可能会节省多达20 \%的长期成本。同时,随着不确定性的增加,派生的节省往往会减少。

Drones have attracted growing interest in last-mile delivery due to their potential to significantly reduce costs and enhance operational flexibility, particularly in areas of sparse and uncertain demand where traditional truck delivery proves inefficient. This paper addresses the dynamic order fulfillment problem faced by a retailer operating a fleet of drones to service delivery requests that arrive stochastically. These delivery requests may vary in package profiles, delivery locations, and urgency. We adopt a rolling-horizon framework for order fulfillment and devise a two-stage stochastic program aimed at strategically managing existing orders while considering incoming requests that are subject to various uncertainties. A significant challenge in deploying the envisioned two-stage model lies in its incorporation of vehicle routing constraints, on which exact or brute-force methods are computationally inefficient and unsuitable for real-time operational decisions. To address this, we propose an accelerated L-shaped algorithm that (i) reduces the branching tree size, (ii) replaces exact second-stage solutions with heuristic estimates, and (iii) adapts an alternating strategy for adding optimality cuts. The proposed heuristic demonstrates remarkable performance superiority over the exact method, achieving a 20-fold reduction in average runtime while maintaining an average optimality gap of less than 1\%. We apply the algorithm to a wide range of instances to evaluate the benefits of postponing orders for batch service using the stochastic model. Our results show potential long-term cost savings of up to 20\% when demand uncertainty is explicitly considered in order fulfillment decisions. Meanwhile, the derived savings tend to diminish as the uncertainty increases in order arrivals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源