论文标题
Q-logarithmic Foliations的奇异基因座
Singular locus of q-logarithmic foliations
论文作者
论文摘要
我们确定了通用编码的奇异基因座的结构 - $ q $对数叶子及其与所述叶子的发展的关系。如果环境变化是投射空间$ \ mathbb {p}^n $,我们计算了定义持续奇点方案的分级理想。
We determine the structure of the singular locus of generic codimension-$q$ logarithmic foliations and its relation with the unfoldings of said foliations. In the case where the ambient variety is the projective space $\mathbb{P}^n$ we calculate the graded ideal defining the scheme of persistent singularities.