论文标题

二维RC/子阵列约束代码:有界的重量和几乎平衡的重量

Two dimensional RC/Subarray Constrained Codes: Bounded Weight and Almost Balanced Weight

论文作者

Nguyen, Tuan Thanh, Cai, Kui, Kiah, Han Mao, Immink, Kees A. Schouhamer, Chee, Yeow Meng

论文摘要

在这项工作中,我们研究了对二维二进制阵列的两种限制。特别是,给定$ p,ε> 0 $,我们研究(i)$ p $结合的约束:如果重量最多为$ $ $ $,则据说$ $ m $的二进制矢量是$ p $ b的,并且(ii)$ε$ balboranced约束:据说是$ m $的二进制二进制量,如果是$ m $,则是$ m $ nestem $ - $ $ - $ - $ - $ε-飞达量。 $ [(0.5-ε)*m,(0.5+ε)*m] $。这些约束在几个数据存储系统中至关重要,这些限制将信息数据视为二维(2D)而不是一维(1D),例如横梁电阻内存阵列和全息图数据存储。在这项工作中,为二进制阵列提供了有效的编码/解码算法,以便在每个行上强制强制约束($ p $结合的约束或$ε$ - $ - $ - $平衡的约束)。或在每个子阵列上,被视为2D子阵列约束代码。虽然文献中已经提出了低复杂的设计,主要集中于2D RC的约束代码,其中$ p = 1/2 $和$ε= 0 $,但这项工作提供了有效的编码方法,可用于2D RC受限的代码和2D子阵列约束代码,以及该方法适用于$ P $ P $ P $ P $ P $ P $ p。此外,对于$ p $和$ε$的某些值,我们表明,对于足够大的数组大小,存在线性时间编码/解码算法,最多会产生一个冗余位。

In this work, we study two types of constraints on two-dimensional binary arrays. In particular, given $p,ε>0$, we study (i) The $p$-bounded constraint: a binary vector of size $m$ is said to be $p$-bounded if its weight is at most $pm$, and (ii) The $ε$-balanced constraint: a binary vector of size $m$ is said to be $ε$-balanced if its weight is within $[(0.5-ε)*m,(0.5+ε)*m]$. Such constraints are crucial in several data storage systems, those regard the information data as two-dimensional (2D) instead of one-dimensional (1D), such as the crossbar resistive memory arrays and the holographic data storage. In this work, efficient encoding/decoding algorithms are presented for binary arrays so that the weight constraint (either $p$-bounded constraint or $ε$-balanced constraint) is enforced over every row and every column, regarded as 2D row-column (RC) constrained codes; or over every subarray, regarded as 2D subarray constrained codes. While low-complexity designs have been proposed in the literature, mostly focusing on 2D RC constrained codes where $p = 1/2$ and $ε= 0$, this work provides efficient coding methods that work for both 2D RC constrained codes and 2D subarray constrained codes, and more importantly, the methods are applicable for arbitrary values of $p$ and $ε$. Furthermore, for certain values of $p$ and $ε$, we show that, for sufficiently large array size, there exists linear-time encoding/decoding algorithm that incurs at most one redundant bit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源