论文标题
非亚伯融合,缩小和量子的量子尺寸
Non-Abelian Fusion, Shrinking and Quantum Dimensions of Abelian Gauge Fluxes
论文作者
论文摘要
拓扑激发的编织和融合规则是拓扑量子计算和拓扑秩序中必不可少的拓扑不变性。虽然2D中的激发总是像粒子一样的人,但3D中的激发不仅包含粒子,而且还包含循环 - 在空间非本地物体上 - 使研究拓扑不变的较高尺寸的拓扑不变。虽然从批量的Chern-Simons田地理论和边缘综合场理论中可以很好地理解2D融合规则,但对于从更高维度的散装拓扑场理论来说,3D融合规则尚未彻底探索它。在这里,我们对(i)(i)携带Abelian量规磁通的回路以及(ii)循环如何将循环缩小到路径积分中的颗粒中,从而产生融合规则,循环缩小规则和下降不变性,例如量子尺寸。我们首先将量规不变的威尔逊操作员分配给每个激发,并通过威尔逊操作员的等价类别确定不同激发的数量。然后,我们绝热地转移了两个威尔逊操作员,以观察他们如何融合并在路径积分中分裂。尽管循环带来的量规通量的ABELIAN性质,但它们的融合可能具有非阿布尔的性质。同时,我们绝热地变形了未成结的循环的世界表,并检查了缩小的结果。我们发现,由此产生的循环脱离规则在代数上与融合规则一致。有趣的是,融合一对环和反环可能会产生多个真空吸尘器,但在2D中融合一对Anyon和Anti-on,仅具有一个真空吸尘器。通过在3D中建立融合和收缩的现场理论基础,这项工作留下了有趣的方向,例如,对称性富集,量子门和辫状的2类单相2类的物理学。
Braiding and fusion rules of topological excitations are indispensable topological invariants in topological quantum computation and topological orders. While excitations in 2D are always particle-like anyons, those in 3D incorporate not only particles but also loops -- spatially nonlocal objects -- making it novel and challenging to study topological invariants in higher dimensions. While 2D fusion rules have been well understood from bulk Chern-Simons field theory and edge conformal field theory, it is yet to be thoroughly explored for 3D fusion rules from higher dimensional bulk topological field theory. Here, we perform a field-theoretical study on (i) how loops that carry Abelian gauge fluxes fuse and (ii) how loops are shrunk into particles in the path integral, which generates fusion rules, loop-shrinking rules, and descendent invariants, e.g., quantum dimensions. We first assign a gauge-invariant Wilson operator to each excitation and determine the number of distinct excitations through equivalence classes of Wilson operators. Then, we adiabatically shift two Wilson operators together to observe how they fuse and are split in the path integral; despite the Abelian nature of the gauge fluxes carried by loops, their fusions may be of non-Abelian nature. Meanwhile, we adiabatically deform world-sheets of unknotted loops into world-lines and examine the shrinking outcomes; we find that the resulting loop-shrinking rules are algebraically consistent to fusion rules. Interestingly, fusing a pair of loop and anti-loop may generate multiple vacua, but fusing a pair of anyon and anti-anyon in 2D has one vacuum only. By establishing a field-theoretical ground for fusion and shrinking in 3D, this work leaves intriguing directions, e.g., symmetry enrichment, quantum gates, and physics of braided monoidal 2-category of 2-group.