论文标题
磁化等离子体的半线性理论的汉密尔顿公式
Hamiltonian Formulations of Quasilinear Theory for Magnetized Plasmas
论文作者
论文摘要
对于均匀和非均匀的磁化等离子体的病例,提出了半线性理论的哈密顿公式。首先,根据一般的汉密尔顿表述,对狗窝和恩格尔曼(Bennel and Engelmann)的标准准线性理论进行了审查和重新解释。在这一哈密顿量表示中,我们根据我们以前的以前的工作Brizard_chan(2001,2004),在空间均匀的磁化背景等离子体中介绍了从空间均匀的磁性背景等离子体中的二维准线性扩散到三维的准磁性扩散。对非均匀磁化等离子体的产生的准线性理论产生了$ 3 \ times 3 $扩散张量,自然结合了Quasilinear radial扩散及其协同连接,以在二维不变速度速度(例如,能量和螺距和音高和螺距角度)中扩散到扩散中。
Hamiltonian formulations of quasilinear theory are presented for the cases of uniform and nonuniform magnetized plasmas. First, the standard quasilinear theory of Kennel and Engelmann (1966) is reviewed and reinterpreted in terms of a general Hamiltonian formulation. Within this Hamiltonian representation, we present the transition from two-dimensional quasilinear diffusion in a spatially uniform magnetized background plasma to three-dimensional quasilinear diffusion in a spatially nonuniform magnetized background plasma based on our previous work Brizard_Chan (2001,2004). The resulting quasilinear theory for nonuniform magnetized plasmas yields a $3\times 3$ diffusion tensor that naturally incorporates quasilinear radial diffusion as well as its synergistic connections to diffusion in two-dimensional invariant velocity space (e.g., energy and pitch angle).