论文标题
Net2Brain:将人造视觉模型与人脑反应进行比较的工具箱
Net2Brain: A Toolbox to compare artificial vision models with human brain responses
论文作者
论文摘要
我们介绍了Net2Brain,这是一种图形和命令行的用户界面工具箱,用于比较人工深神经网络(DNN)和人脑记录的代表空间。虽然不同的工具箱仅促进单个功能或仅关注一小部分监督图像分类模型,但Net2Brain允许提取600多个受过培训的DNN的激活,以执行与视觉相关的任务多样化(例如,语义分段,DEPTH,DEPTH,DEPTH,ACTION估算,动作识别等),而不是图像和视频数据集。该工具箱在这些激活上计算代表性差异矩阵(RDM),并使用代表性相似性分析(RSA),加权RSA(在特定的ROI和Searchlight搜索中)将它们与大脑记录进行比较。此外,可以在工具箱中添加新的刺激和脑记录数据集以进行评估。我们通过一个示例展示了如何使用Net2Brain的功能和优势,以展示如何用于检验认知计算神经科学的假设。
We introduce Net2Brain, a graphical and command-line user interface toolbox for comparing the representational spaces of artificial deep neural networks (DNNs) and human brain recordings. While different toolboxes facilitate only single functionalities or only focus on a small subset of supervised image classification models, Net2Brain allows the extraction of activations of more than 600 DNNs trained to perform a diverse range of vision-related tasks (e.g semantic segmentation, depth estimation, action recognition, etc.), over both image and video datasets. The toolbox computes the representational dissimilarity matrices (RDMs) over those activations and compares them to brain recordings using representational similarity analysis (RSA), weighted RSA, both in specific ROIs and with searchlight search. In addition, it is possible to add a new data set of stimuli and brain recordings to the toolbox for evaluation. We demonstrate the functionality and advantages of Net2Brain with an example showcasing how it can be used to test hypotheses of cognitive computational neuroscience.