论文标题

使用变压器对语义流利的认知建模

Cognitive Modeling of Semantic Fluency Using Transformers

论文作者

Nighojkar, Animesh, Khlyzova, Anna, Licato, John

论文摘要

深层语言模型可以是人类认知的解释模型吗?如果是这样,他们的限制是什么?为了探讨这个问题,我们提出了一种称为“超参数假设”的方法,该方法使用预测性超参数调整,以查找认知行为概况的个体描述。我们通过预测语义流利任务(SFT)中的人类表现迈出了这种方法,这是认知科学领域的一项良好的任务,从未使用过使用基于变压器的语言模型(TLMS)进行建模。在我们的任务设置中,我们比较了几种预测接下来表现的单个单词的方法。我们报告了初步证据表明,尽管人们和TLM的学习和使用语言的实施差异明显,但可以使用TLMS来确定人类流利性任务行为的个体差异,而不是现有计算模型,并且可以为人类记忆重新训练策略提供见解 - 认知过程通常不可能被认为是TLM的类型。最后,我们讨论了这项工作对知识表示认知建模的含义。

Can deep language models be explanatory models of human cognition? If so, what are their limits? In order to explore this question, we propose an approach called hyperparameter hypothesization that uses predictive hyperparameter tuning in order to find individuating descriptors of cognitive-behavioral profiles. We take the first step in this approach by predicting human performance in the semantic fluency task (SFT), a well-studied task in cognitive science that has never before been modeled using transformer-based language models (TLMs). In our task setup, we compare several approaches to predicting which word an individual performing SFT will utter next. We report preliminary evidence suggesting that, despite obvious implementational differences in how people and TLMs learn and use language, TLMs can be used to identify individual differences in human fluency task behaviors better than existing computational models, and may offer insights into human memory retrieval strategies -- cognitive process not typically considered to be the kinds of things TLMs can model. Finally, we discuss the implications of this work for cognitive modeling of knowledge representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源