论文标题

少量数据共享益处分布式优化和学习如何:数据异质性的上升空间

How a Small Amount of Data Sharing Benefits Distributed Optimization and Learning : The Upside of Data Heterogeneity

论文作者

Zhu, Mingxi, Ye, Yinyu

论文摘要

分布式优化算法广泛用于机器学习。本文研究了少量数据共享如何改善其性能。为了关注一般线性模型,我们分析了数据共享对原始和偶偶式优化方法的影响。我们的贡献是三倍。首先,从理论的角度来看,我们表明,最小数据共享通过将数据从不利的有利结构转移到更有利的结构来改善算法性能。与普遍认为数据异质性始终有害的信念相反,我们证明,虽然异质性通常会减慢诸如FedAvg和分布式PCG之类的原始方法中的收敛性,但它可以在原始二线共识算法中加速收敛,例如分布式ADMM,FED-ADMM,FED-ADMM,FED-ADMM,以及通过富含Dyalick Dynamics的富特级。这揭示了异质性如何影响不同算法系列的一种双重性。其次,在这种见解的基础上,我们设计了一个用于最小数据共享的元叠加,适合原始偶的方法。我们表明,在共享数据的最低1%的情况下,可以在机器学习任务中显着加速收敛。最后,我们从更广泛的角度说,即使有限的协作也可以产生大型协同作用,这一想法超越了优化环境。我们的发现提供了理论和实用指导,可以通过最小的合作来改善分布式学习,并激励进一步探索跨剂协作解决复杂的全球学习问题。

Distributed optimization algorithms are widely used in machine learning. This paper investigates how a small amount of data sharing can improve their performance. Focusing on general linear models, we analyze the effects of data sharing on both primal and primal-dual optimization methods. Our contributions are threefold. First, from a theoretical perspective, we show that minimal data sharing improves algorithmic performance by shifting data from less favorable to more favorable structures. Contrary to the common belief that data heterogeneity is always harmful, we prove that while heterogeneity generally slows convergence in primal methods such as FedAvg and distributed PCG, it can accelerate convergence in primal-dual consensus algorithms like distributed ADMM, Fed-ADMM, and EXTRA by enriching dual dynamics. This reveals a form of duality in how heterogeneity affects different algorithm families. Second, building on this insight, we design a meta-algorithm for minimal data sharing, adaptable to both primal and primal-dual methods. We show that with as little as 1 percent shared data, convergence can be significantly accelerated across machine learning tasks. Finally, we argue from a broader perspective that even limited collaboration can yield large synergies, an idea that transcends the optimization context. Our findings provide both theoretical and practical guidance for improving distributed learning through minimal cooperation and motivate further exploration of cross-agent collaboration in solving complex global learning problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源