论文标题
G2φNet:将组织的基因型和生物力学表型与深度学习有关
G2Φnet: Relating Genotype and Biomechanical Phenotype of Tissues with Deep Learning
论文作者
论文摘要
许多遗传突变会不利地影响承重软组织的结构和功能,临床后遗症通常导致残疾或死亡。遗传学和组织力学表征的平行进步为这些条件提供了重要的见解,但是仍然需要整合此类信息。我们提出了一种新型的基因型到生物力学 - 机械性型神经网络(G2φNET),用于表征和分类软组织的生物力学特性,这是组织健康或疾病的重要功能读数。我们通过推断涉及细胞外成分缺陷或缺陷的四种小鼠模型的非线性,依赖基因型依赖性本质的本质行为来说明我们的方法的实用性。我们表明,G2φNET可以通过使用有限,嘈杂和非结构化的实验数据来正确归因于相关的基因型,同时可以推断出生物力学响应。更广泛地说,G2φNet提供了一种强大的方法和范式转移,用于定量地将基因型和生物力学表型相关联,并有望更好地理解它们在生物组织中的相互作用。
Many genetic mutations adversely affect the structure and function of load-bearing soft tissues, with clinical sequelae often responsible for disability or death. Parallel advances in genetics and histomechanical characterization provide significant insight into these conditions, but there remains a pressing need to integrate such information. We present a novel genotype-to-biomechanical-phenotype neural network (G2Φnet) for characterizing and classifying biomechanical properties of soft tissues, which serve as important functional readouts of tissue health or disease. We illustrate the utility of our approach by inferring the nonlinear, genotype-dependent constitutive behavior of the aorta for four mouse models involving defects or deficiencies in extracellular constituents. We show that G2Φnet can infer the biomechanical response while simultaneously ascribing the associated genotype correctly by utilizing limited, noisy, and unstructured experimental data. More broadly, G2Φnet provides a powerful method and a paradigm shift for correlating genotype and biomechanical phenotype quantitatively, promising a better understanding of their interplay in biological tissues.