论文标题
DO-AIQ:AI Mislabel检测算法的质量评估的实验设计方法
Do-AIQ: A Design-of-Experiment Approach to Quality Evaluation of AI Mislabel Detection Algorithm
论文作者
论文摘要
人工智能(AI)算法的质量对于在网络安全,医疗保健和自动驾驶等各种应用中自信采用算法至关重要。这项工作提出了一个原则上的框架,该框架使用实验设计的方法系统地评估AI算法的质量,命名为DO-AIQ。具体来说,我们专注于研究针对数据中毒的AI Mislabel数据算法的质量。 AI算法的性能受算法和数据质量中的超参数的影响,尤其是数据错误标签,类别不平衡和数据类型。为了评估AI算法的质量并获得有关算法质量的值得信赖的评估,我们建立了经验设计的框架,以在高维约束空间中构建有效的空间填充设计,并使用有效的替代模型使用添加性高斯工艺开发有效的替代模型,以启用AI Algorith质量的模拟AI algorithm的模拟。进行了理论和数值研究,以证明所提出框架的优点是合理的。所提出的框架可以为AI算法设置一个示例,以增强AI的鲁棒性,可重复性和透明度的保证。
The quality of Artificial Intelligence (AI) algorithms is of significant importance for confidently adopting algorithms in various applications such as cybersecurity, healthcare, and autonomous driving. This work presents a principled framework of using a design-of-experimental approach to systematically evaluate the quality of AI algorithms, named as Do-AIQ. Specifically, we focus on investigating the quality of the AI mislabel data algorithm against data poisoning. The performance of AI algorithms is affected by hyperparameters in the algorithm and data quality, particularly, data mislabeling, class imbalance, and data types. To evaluate the quality of the AI algorithms and obtain a trustworthy assessment on the quality of the algorithms, we establish a design-of-experiment framework to construct an efficient space-filling design in a high-dimensional constraint space and develop an effective surrogate model using additive Gaussian process to enable the emulation of the quality of AI algorithms. Both theoretical and numerical studies are conducted to justify the merits of the proposed framework. The proposed framework can set an exemplar for AI algorithm to enhance the AI assurance of robustness, reproducibility, and transparency.