论文标题

一种多样化的大型建筑数据集和一种新颖的插入域概括方法,用于建筑提取

A diverse large-scale building dataset and a novel plug-and-play domain generalization method for building extraction

论文作者

Luo, Muying, Ji, Shunping, Wei, Shiqing

论文摘要

在本文中,我们介绍了一个新的建筑数据集,并提出了一种新颖的域泛化方法,以促进从高分辨率遥感图像中提取建筑物的开发。当前建筑数据集的问题涉及它们缺乏多样性,标签的质量不令人满意,并且几乎不使用它们来训练具有良好概括能力的建筑提取模型,以便在实践场景中正确评估模型的真实性能。为了解决这些问题,我们建立了一个名为WHU-MIX建筑数据集的多样化,大规模和高质量的建筑数据集,该数据集更加面向实践。 WHU-MIX建筑数据集由一个培训/验证集组成,该培训/验证集包含来自世界各地的43,727个不同图像,以及一个测试集,其中包含来自五大洲其他五个城市的8402张图像。此外,为了进一步提高建筑物提取模型的概括能力,我们提出了一种名为批处理样式混合(BSM)的域概括方法,该方法可以嵌入为有效的插入式插件模块,以建筑物提取模型的frond-End,并为模型提供逐渐更大的数据分布,以了解数据不变知识。这项研究中进行的实验证实了WHU-MIX建筑数据集的潜力,以提高建筑物提取模型的性能,与其他现有数据集相比,MIOU提高了6-36%。其他数据集中标签不准确的不利影响可能会导致约20%的IOU减少。该实验还证实了所提出的BSM模块在增强模型的概括能力和鲁棒性方面的高性能,超过了13%的基线模型,而MIOU中最新的域概括方法则超过了4-15%。

In this paper, we introduce a new building dataset and propose a novel domain generalization method to facilitate the development of building extraction from high-resolution remote sensing images. The problem with the current building datasets involves that they lack diversity, the quality of the labels is unsatisfactory, and they are hardly used to train a building extraction model with good generalization ability, so as to properly evaluate the real performance of a model in practical scenes. To address these issues, we built a diverse, large-scale, and high-quality building dataset named the WHU-Mix building dataset, which is more practice-oriented. The WHU-Mix building dataset consists of a training/validation set containing 43,727 diverse images collected from all over the world, and a test set containing 8402 images from five other cities on five continents. In addition, to further improve the generalization ability of a building extraction model, we propose a domain generalization method named batch style mixing (BSM), which can be embedded as an efficient plug-and-play module in the frond-end of a building extraction model, providing the model with a progressively larger data distribution to learn data-invariant knowledge. The experiments conducted in this study confirmed the potential of the WHU-Mix building dataset to improve the performance of a building extraction model, resulting in a 6-36% improvement in mIoU, compared to the other existing datasets. The adverse impact of the inaccurate labels in the other datasets can cause about 20% IoU decrease. The experiments also confirmed the high performance of the proposed BSM module in enhancing the generalization ability and robustness of a model, exceeding the baseline model without domain generalization by 13% and the recent domain generalization methods by 4-15% in mIoU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源