论文标题

具有强额分离器的图形类别的产品结构

Product structure of graph classes with strongly sublinear separators

论文作者

Dvořák, Zdeněk, Wood, David R.

论文摘要

我们研究了遗传图类别的产品结构,该类别承认强烈的均匀分离器。我们表征了诸如恒星强产物的子图和强大大小的完整图。在更确切的结果中,我们表明,如果任何遗传图$ \ nathcal {g} $接纳$ o(n^{1-ε})$分离器,那么对于任何固定的$δ\ in(0,ε)$ in $ \ n $ vertex graph In $ \ nathcal {g} $ y mathcal {g} $ y Mighth $ y Simes a a y Simes a a y Mighthe y a y Mighth y a y Mighte y a y age a y a $ h y a y a $ h是一个强的产品, $ O(n^{1-ε+δ})$。如果我们允许$ h $具有树深度$ o(\ log \ log n)$,则此结果为$δ= 0 $。此外,使用经典的等级不等式的网格图形图,我们显示了对$δ$的依赖性,以及上述$ \ text {td}(h)\ in O(\ log \ log \ log \ log n)$绑定的依赖性。我们证明,有界树宽的$ n $ vertex图是带有树深度$ t $的图形的子图和大小$ o(n^{1/t})$的完整图,这是最好的。最后,我们调查了以下猜想:对于任何属于$ o(n^{1-ε})$分隔符的任何遗传图类$ \ Mathcal {g} $,每个$ n $ -vertex graph in $ \ Mathcal {g} $都是图形$ h $ h $ h $ h $ h $ h $ h $ h $ h $ h $ thebled h $ thece tree tree tree-width and shape y shize $ s $ s $ o($ o($ o)的强型子的子分类。我们为各种$ \ MATHCAL {G} $ five的各种类证明了这一点。

We investigate the product structure of hereditary graph classes admitting strongly sublinear separators. We characterise such classes as subgraphs of the strong product of a star and a complete graph of strongly sublinear size. In a more precise result, we show that if any hereditary graph class $\mathcal{G}$ admits $O(n^{1-ε})$ separators, then for any fixed $δ\in(0,ε)$ every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-depth and a complete graph of size $O(n^{1-ε+δ})$. This result holds with $δ=0$ if we allow $H$ to have tree-depth $O(\log\log n)$. Moreover, using extensions of classical isoperimetric inequalties for grids graphs, we show the dependence on $δ$ in our results and the above $\text{td}(H)\in O(\log\log n)$ bound are both best possible. We prove that $n$-vertex graphs of bounded treewidth are subgraphs of the product of a graph with tree-depth $t$ and a complete graph of size $O(n^{1/t})$, which is best possible. Finally, we investigate the conjecture that for any hereditary graph class $\mathcal{G}$ that admits $O(n^{1-ε})$ separators, every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-width and a complete graph of size $O(n^{1-ε})$. We prove this for various classes $\mathcal{G}$ of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源