论文标题

Lirot.ai:一个新颖的人群视网膜图像分割的平台

Lirot.ai: A Novel Platform for Crowd-Sourcing Retinal Image Segmentations

论文作者

Fhima, Jonathan, Van Eijgen, Jan, Freiman, Moti, Stalmans, Ingeborg, Behar, Joachim A.

论文摘要

简介:对于监督的深度学习(DL)任务,研究人员需要大量注释的数据集。在医学数据科学中,开发DL模型的主要局限性之一是缺乏大量注释的示例。这通常是由于注释所需的时间和专业知识。我们介绍Lirot。 AI是一个新颖的平台,用于促进和众包的图像分割。方法:lirot。 AI由三个组成部分组成; iPados客户端应用程序名为LIROT。 AI-App,名为LIROT的后端服务器。 AI-Server和Python API名称Lirot。 ai-api。 lirot。 Ai-App是在Swift 5.6和Lirot开发的。 AI-Server是壁炉后端。 lirot。 AI-API允许管理数据库。 lirot。 AI-APP可以根据需要安装在尽可能多的iPados设备上,以便注释者可以同时且远程执行其分割。我们将Apple铅笔的兼容性结合在一起,使专家比任何其他基于计算机的替代方案都更快,更准确,更直观。结果:我们证明了LIROT的用法。 AI用于创建带有参考脉管系统分段的视网膜眼底数据集。讨论和未来的工作:我们将使用积极的学习策略来继续扩大视网膜眼底数据集,包括一个更有效的过程来选择要注释的图像并将其分发给注释者。

Introduction: For supervised deep learning (DL) tasks, researchers need a large annotated dataset. In medical data science, one of the major limitations to develop DL models is the lack of annotated examples in large quantity. This is most often due to the time and expertise required to annotate. We introduce Lirot. ai, a novel platform for facilitating and crowd-sourcing image segmentations. Methods: Lirot. ai is composed of three components; an iPadOS client application named Lirot. ai-app, a backend server named Lirot. ai-server and a python API name Lirot. ai-API. Lirot. ai-app was developed in Swift 5.6 and Lirot. ai-server is a firebase backend. Lirot. ai-API allows the management of the database. Lirot. ai-app can be installed on as many iPadOS devices as needed so that annotators may be able to perform their segmentation simultaneously and remotely. We incorporate Apple Pencil compatibility, making the segmentation faster, more accurate, and more intuitive for the expert than any other computer-based alternative. Results: We demonstrate the usage of Lirot. ai for the creation of a retinal fundus dataset with reference vasculature segmentations. Discussion and future work: We will use active learning strategies to continue enlarging our retinal fundus dataset by including a more efficient process to select the images to be annotated and distribute them to annotators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源