论文标题
在$ \ ell_ \ infty $的子空间和$ \ mathbb {l}(\ mathbb {x},\ ell _ {\ infty}^n)$中的极端收缩
On subspaces of $\ell_\infty$ and extreme contraction in $\mathbb{L}(\mathbb{X}, \ell_{\infty}^n)$
论文作者
论文摘要
我们研究了子空间是否是多面体,研究了空间$ \ ell _ {\ infty} $的子空间的不同可能性。我们进一步研究了$ \ ell _ {\ infty} $的有限维子空间,该子空间是$ \ ell_ \ eld_ \ infty^n $形式的形式,形式有些$ n \ geq 2. $作为结果,我们计算了界限运算符的极端缩放的极端收缩次数。特别是我们发现$ \ mathbb {l}(\ mathbb {x},\ ell _ {\ infty}^n)的极端收缩数量,其中$ \ mathbb {x} $是一个有限的二维多面体空间。
We investigate different possiblities of subspaces of the space $\ell_{\infty}$ in terms of whether the subspaces are polyhedral or not. We further study finite-dimensional subspaces of $\ell_{\infty}$ which are of the form $\ell_\infty^n$ form some $ n \geq 2.$ As an application of the results we compute the number of extreme contractions for a class of the space of bounded linear operators. In particular we find the number of extreme contractions of $\mathbb{L}(\mathbb{X}, \ell_{\infty}^n),$ where $\mathbb{X}$ is a finite-dimensional polyhedral space.