论文标题

在内部磁盘边缘类似于TOI-216B的诱捕(子)海王线:对磁盘粘度和Neptunian沙漠的影响

Trapping (sub-)Neptunes similar to TOI-216b at the inner disk rim: Implications for the disk viscosity and the Neptunian desert

论文作者

Chrenko, Ondřej, Chametla, Raúl O., Nesvorný, David, Flock, Mario

论文摘要

[删节]观察到的亚螺旋的发生率在0.1 AU处断裂,这通常归因于在原星磁盘内部边缘的迁移陷阱,在原始磁盘的内部边缘,正面共旋转扭矩可防止向内迁移。我们认为,内部磁盘区域中的条件是,随着它们的共旋转区域耗尽,子脉冲可能会张开间隙,失去对共旋转扭矩的支撑,然后陷阱效率变得不确定。我们研究在内部磁盘边缘捕获此类间隙的行星所需的内容。我们对行星迁移的2D局部等温和非等热动力学模拟进行了。磁盘中引入了粘度转变,以(i)产生密度下降,并且(ii)随着行星从死区迁移到具有活跃的磁旋转不稳定(MRI)的区域,粘度的增加。我们选择TOI-216B作为Neptune样的上限测试用例,但我们还探索了在固定和不断发展的轨道上的不同行星质量。对于星球与星级质量比$ q \ simeq(4 $ - $ 8)\ times10^{ - 5} $,由于间隙的开口,磁盘边缘的密度下降被重塑,并且通常被以行星的旋律为中心的小密度凸起所取代。仅当凸起保留足够的气体质量,并且共旋转区域变为方位不对称时,才有可能捕获,而库岛则具有流化的岛,该岛屿会在地球前积累气体过重。过度密度会施加正扭矩,可以抵消螺旋臂的负扭矩。在我们的模型中,有效的陷阱取决于$α$粘度及其在整个粘度转变中的对比度。为了捕获TOI-216b,$α_ {\ Mathrm {dz}} = 10^{ - 3} $在死区域需要$α_ {\ Mathrm {mathrm {Mri}} \ gtrsim5 \ gtrsim5 \ times10^{ - 2} $ in mri-Active区域中。如果需要$α_ {\ mathrm {dz}} = 5 \ times10^{ - 4} $,$α_ {\ mathrm {mri}} \ gtrsim7.5 \ times10^{ - 2} $。

[Abridged] The occurrence rate of observed sub-Neptunes has a break at 0.1 au, which is often attributed to a migration trap at the inner rim of protoplanetary disks where a positive co-rotation torque prevents inward migration. We argue that conditions in inner disk regions are such that sub-Neptunes are likely to open gaps, lose the support of the co-rotation torque as their co-rotation regions become depleted, and the trapping efficiency then becomes uncertain. We study what it takes to trap such gap-opening planets at the inner disk rim. We performed 2D locally isothermal and non-isothermal hydrodynamic simulations of planet migration. A viscosity transition was introduced in the disk to (i) create a density drop and (ii) mimic the viscosity increase as the planet migrated from a dead zone towards a region with active magneto-rotational instability (MRI). We chose TOI-216b as a Neptune-like upper-limit test case, but we also explored different planetary masses, both on fixed and evolving orbits. For planet-to-star mass ratios $q\simeq(4$-$8)\times10^{-5}$, the density drop at the disk rim becomes reshaped due to a gap opening and is often replaced with a small density bump centered on the planet's corotation. Trapping is possible only if the bump retains enough gas mass and if the co-rotation region becomes azimuthally asymmetric, with an island of librating streamlines that accumulate a gas overdensity ahead of the planet. The overdensity exerts a positive torque that can counteract the negative torque of spiral arms. In our model, efficient trapping depends on the $α$ viscosity and its contrast across the viscosity transition. In order to trap TOI-216b, $α_{\mathrm{DZ}}=10^{-3}$ in the dead zone requires $α_{\mathrm{MRI}}\gtrsim5\times10^{-2}$ in the MRI-active zone. If $α_{\mathrm{DZ}}=5\times10^{-4}$, $α_{\mathrm{MRI}}\gtrsim7.5\times10^{-2}$ is needed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源