论文标题
Riesz转换与Ball Quasi-Banach功能空间相关的耐铁空间的表征
Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
论文作者
论文摘要
令$ x $为一个球式式式功能空间,满足一些温和的假设和$ h_x(\ mathbb {r}^n)$与$ x $相关的hardy空间。在本文中,作者介绍了谐波函数的hardy空间$ h_x(\ mathbb {r}^{n+1} _+)$,也是hardy space $ \ mathbb {h} _x(\ mathbb {r} $ h_x(\ MATHBB {r}^n)$,$ h_ {x,2}(\ Mathbb {r}^{n+1} _+)$和$ \ m athbb {h} _ {x _ {x,2} $ h_ {x,2}(\ Mathbb {r}^{n+1} _+)$和$ \ Mathbb {h} _ {x,2}(\ Mathbb {r}^{n+1} _+1} _+)是$ h_x(n+1} _ $ \ mathbb {h} _x(\ mathbb {r}^{n+1} _+)$。使用这些同构,作者建立了$ H_X(\ Mathbb {r}^n)$的第一阶Riesz变换特征。还获得了$ H_X(\ Mathbb {r}^n)$的高级Riesz变换特征。本文获得的结果具有广泛的一般性,可以应用于经典的耐寒空间,加权耐寒的空间,Herz-Hardy空间,Lorentz-Hardy空间,可变的Hardy空间,混合NORM HARTY空间,局部广义的Herz-Hardy Space和Mixper-Norm-Norm Herz-Herz-Hardy Space。
Let $X$ be a ball quasi-Banach function space satisfying some mild assumptions and $H_X(\mathbb{R}^n)$ the Hardy space associated with $X$. In this article, the authors introduce both the Hardy space $H_X(\mathbb{R}^{n+1}_+)$ of harmonic functions and the Hardy space $\mathbb{H}_X(\mathbb{R}^{n+1}_+)$ of harmonic vectors, associated with $X$, and then establish the isomorphisms among $H_X(\mathbb{R}^n)$, $H_{X,2}(\mathbb{R}^{n+1}_+)$, and $\mathbb{H}_{X,2}(\mathbb{R}^{n+1}_+)$, where $H_{X,2}(\mathbb{R}^{n+1}_+)$ and $\mathbb{H}_{X,2}(\mathbb{R}^{n+1}_+)$ are, respectively, certain subspaces of $H_X(\mathbb{R}^{n+1}_+)$ and $\mathbb{H}_X(\mathbb{R}^{n+1}_+)$. Using these isomorphisms, the authors establish the first order Riesz transform characterization of $H_X(\mathbb{R}^n)$. The higher order Riesz transform characterization of $H_X(\mathbb{R}^n)$ is also obtained. The results obtained in this article have a wide range of generality and can be applied to the classical Hardy space, the weighted Hardy space, the Herz-Hardy space, the Lorentz-Hardy space, the variable Hardy space, the mixed-norm Hardy space, the local generalized Herz-Hardy space, and the mixed-norm Herz-Hardy space.