论文标题

通过多尺度扩散和降解聚合机制逆转皮肤癌对抗性示例

Reversing Skin Cancer Adversarial Examples by Multiscale Diffusive and Denoising Aggregation Mechanism

论文作者

Wang, Yongwei, Li, Yuan, Shen, Zhiqi, Qiao, Yuhui

论文摘要

可靠的皮肤癌诊断模型在早期筛查和医疗干预中起着至关重要的作用。盛行的计算机辅助皮肤癌分类系统采用深度学习方法。但是,最近的研究揭示了它们对对抗攻击的极大脆弱性 - 通常无法触及扰动,以显着降低皮肤癌诊断模型的性能。为了减轻这些威胁,这项工作通过在皮肤癌图像中反向对抗性扰动提出了一个简单,有效和资源有效的防御框架。具体而言,首先建立了多尺度图像金字塔,以更好地保留医学成像域中的判别结构。为了中和对抗性效应,通过注射各向同性高斯噪声将不同尺度的皮肤图像逐渐扩散,以将对抗性示例移至干净的图像歧管。至关重要的是,为了进一步逆转对抗噪声并抑制了冗余的注入噪音,精心设计了一种新型的多尺度降级机制,可以从相邻尺度汇总图像信息。我们评估了方法对ISIC 2019的防御效果,这是最大的皮肤癌多类分类数据集。实验结果表明,所提出的方法可以成功地逆转不同攻击的对抗扰动,并且在捍卫皮肤癌诊断模型中的某些最新方法明显优于某些最先进的方法。

Reliable skin cancer diagnosis models play an essential role in early screening and medical intervention. Prevailing computer-aided skin cancer classification systems employ deep learning approaches. However, recent studies reveal their extreme vulnerability to adversarial attacks -- often imperceptible perturbations to significantly reduce the performances of skin cancer diagnosis models. To mitigate these threats, this work presents a simple, effective, and resource-efficient defense framework by reverse engineering adversarial perturbations in skin cancer images. Specifically, a multiscale image pyramid is first established to better preserve discriminative structures in the medical imaging domain. To neutralize adversarial effects, skin images at different scales are then progressively diffused by injecting isotropic Gaussian noises to move the adversarial examples to the clean image manifold. Crucially, to further reverse adversarial noises and suppress redundant injected noises, a novel multiscale denoising mechanism is carefully designed that aggregates image information from neighboring scales. We evaluated the defensive effectiveness of our method on ISIC 2019, a largest skin cancer multiclass classification dataset. Experimental results demonstrate that the proposed method can successfully reverse adversarial perturbations from different attacks and significantly outperform some state-of-the-art methods in defending skin cancer diagnosis models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源