论文标题
图表上的关系自学学习
Relational Self-Supervised Learning on Graphs
论文作者
论文摘要
在过去的几年中,图表学习(GRL)是分析图形结构数据的有力策略。最近,GRL方法通过采用用于图像的学习表示形式而开发的自我监督的学习方法来显示出令人鼓舞的结果。尽管它们成功了,但现有的GRL方法倾向于忽略图像和图形之间的固有区别,即,假定图像是独立和相同分布的,而图表在数据实例之间(即节点)中显示了关系信息。为了完全受益于图形结构数据中固有的关系信息,我们提出了一种称为RGRL的新颖GRL方法,该方法从图形本身生成的关系信息中学习。 RGRL学习节点表示形式,使节点之间的关系是增强的不变性,即增强不变的关系,只要保留节点之间的关系,就可以改变节点表示。通过在全球和本地观点中考虑节点之间的关系,RGRL克服了对对比和非对抗性方法的局限性,并实现了两个世界中最好的。在各种下游任务上对14个基准数据集进行了广泛的实验,证明了RGRL优于最先进的基线。 RGRL的源代码可在https://github.com/namkyeong/rgrl上获得。
Over the past few years, graph representation learning (GRL) has been a powerful strategy for analyzing graph-structured data. Recently, GRL methods have shown promising results by adopting self-supervised learning methods developed for learning representations of images. Despite their success, existing GRL methods tend to overlook an inherent distinction between images and graphs, i.e., images are assumed to be independently and identically distributed, whereas graphs exhibit relational information among data instances, i.e., nodes. To fully benefit from the relational information inherent in the graph-structured data, we propose a novel GRL method, called RGRL, that learns from the relational information generated from the graph itself. RGRL learns node representations such that the relationship among nodes is invariant to augmentations, i.e., augmentation-invariant relationship, which allows the node representations to vary as long as the relationship among the nodes is preserved. By considering the relationship among nodes in both global and local perspectives, RGRL overcomes limitations of previous contrastive and non-contrastive methods, and achieves the best of both worlds. Extensive experiments on fourteen benchmark datasets over various downstream tasks demonstrate the superiority of RGRL over state-of-the-art baselines. The source code for RGRL is available at https://github.com/Namkyeong/RGRL.