论文标题

部分可观测时空混沌系统的无模型预测

Constraining Scale Dependent Growth with Redshift Surveys

论文作者

Denissenya, Mikhail, Linder, Eric V.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Ongoing and future redshift surveys have the capability to measure the growth rate of large scale structure at the percent level over a broad range of redshifts, tightly constraining cosmological parameters. Beyond general relativity, however, the growth rate in the linear density perturbation regime can be not only redshift dependent but scale dependent, revealing important clues to modified gravity. We demonstrate that a fully model independent approach of binning the gravitational strength $G_{\rm eff}(k,z)$ matches scalar-tensor results for the growth rate $fσ_8(k,z)$ to $0.02\%$-$0.27\%$ rms accuracy. For data of the quality of the Dark Energy Spectroscopic Instrument (DESI) we find the bin values can be constrained to 1.4\%-28\%. We also explore the general scalar-tensor form, constraining the amplitude and past and future scalaron mass/shape parameters. Perhaps most interesting is the strong complementarity of low redshift peculiar velocity data with DESI-like redshift space distortion measurements, enabling improvements up to a factor 6-7 on 2D joint confidence contour areas. Finally, we quantify some issues with gravity parametrizations that do not include all the key physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源