论文标题

螺旋形对比学习:一种未经注释的CT病变的有效的3D表示学习方法

Spiral Contrastive Learning: An Efficient 3D Representation Learning Method for Unannotated CT Lesions

论文作者

Zhai, Penghua, Zhu, Enwei, Qi, Baolian, Wei, Xin, Li, Jinpeng

论文摘要

具有病理注释的计算机断层扫描(CT)样品很难获得。结果,计算机辅助诊断(CAD)算法在小型数据集(例如,带有1,018个样品的Lidc-Idri)上进行了培训,从而限制了其准确性和可靠性。在过去的五年中,通过二维(2D)和三维(3D)自我监督学习(SSL)算法对CT病变的无监督表示量身定制了几项作品。 2D算法很难捕获3D信息,并且现有的3D算法在计算上很重。轻巧的3D SSL仍然是要探索的边界。在本文中,我们提出了螺旋形对比学习(SCL),该学习以计算有效的方式得出3D表示。 SCL首先使用信息保护螺旋变换将3D病变转换为2D平面,然后使用2D对比度学习学习转换不变的特征。对于增强,我们考虑自然图像增强和医疗图像增强。我们通过在嵌入层上训练分类头来评估SCL。实验结果表明,对于无监督的代表性学习,SCL在LIDC-IDRI(89.72%),LNDB(82.09%)和天奇(90.16%)上实现了最先进的准确性。通过进行微调的10%注释数据,SCL的性能与监督学习算法的性能相当(Lidc-Idri的85.75%比85.03%,LINDB的78.20%vs. 73.44%的LNDB和87.85%的87.85%vs. 83.34%vs. 83.34%。同时,与其他3D SSL算法相比,SCL将计算工作减少了66.98%,证明了所提出的方法在无监督的预训练中的效率。

Computed tomography (CT) samples with pathological annotations are difficult to obtain. As a result, the computer-aided diagnosis (CAD) algorithms are trained on small datasets (e.g., LIDC-IDRI with 1,018 samples), limiting their accuracies and reliability. In the past five years, several works have tailored for unsupervised representations of CT lesions via two-dimensional (2D) and three-dimensional (3D) self-supervised learning (SSL) algorithms. The 2D algorithms have difficulty capturing 3D information, and existing 3D algorithms are computationally heavy. Light-weight 3D SSL remains the boundary to explore. In this paper, we propose the spiral contrastive learning (SCL), which yields 3D representations in a computationally efficient manner. SCL first transforms 3D lesions to the 2D plane using an information-preserving spiral transformation, and then learn transformation-invariant features using 2D contrastive learning. For the augmentation, we consider natural image augmentations and medical image augmentations. We evaluate SCL by training a classification head upon the embedding layer. Experimental results show that SCL achieves state-of-the-art accuracy on LIDC-IDRI (89.72%), LNDb (82.09%) and TianChi (90.16%) for unsupervised representation learning. With 10% annotated data for fine-tune, the performance of SCL is comparable to that of supervised learning algorithms (85.75% vs. 85.03% on LIDC-IDRI, 78.20% vs. 73.44% on LNDb and 87.85% vs. 83.34% on TianChi, respectively). Meanwhile, SCL reduces the computational effort by 66.98% compared to other 3D SSL algorithms, demonstrating the efficiency of the proposed method in unsupervised pre-training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源