论文标题

椭圆方程从弱的莫雷空间偏僻

Elliptic equations with a singular drift from a weak Morrey space

论文作者

Chernobai, Misha, Shilkin, Timofey

论文摘要

在本文中,我们证明了椭圆形方程的弱解决方案的存在和唯一性,带有漂移$ b $满足$ \ operatatorName {div} b \ le 0 $ in $ω$中的椭圆形方程。我们假设$ b $属于一些弱的莫雷类,其中包括3D情况下,尤其是在轴上具有奇异性$ x_3 $,渐近$ b(x)\ sim c/r $,其中$ r = \ sqrt {x_1^2^2+x_2^2} $。

In this paper we prove the existence and uniqueness of weak solutions to the Dirichlet problem for an elliptic equation with a drift $b$ satisfying $\operatorname{div} b\le 0$ in $Ω$. We assume $b$ belongs to some weak Morrey class which includes in the 3D case, in particular, drifts having a singularity along the axis $x_3$ with the asymptotic $b(x)\sim c/r$, where $r=\sqrt{x_1^2+x_2^2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源