论文标题
MobilenetV2改编以在超低功率平台上进行面部检测
Adaptation of MobileNetV2 for Face Detection on Ultra-Low Power Platform
论文作者
论文摘要
设计在边缘硬件上运行的深神经网络(DNN)仍然是一个挑战。社区已经采用了标准设计来促进神经网络模型的部署。但是,并不是很强调适应网络拓扑以适合硬件约束。在本文中,我们适应了移动硬件平台MobilenetV2的最广泛使用的架构之一,并研究了更改其拓扑结构并应用后培训后量化的影响。我们讨论了改编的影响以及模型在嵌入式硬件平台上进行面部检测的影响。
Designing Deep Neural Networks (DNNs) running on edge hardware remains a challenge. Standard designs have been adopted by the community to facilitate the deployment of Neural Network models. However, not much emphasis is put on adapting the network topology to fit hardware constraints. In this paper, we adapt one of the most widely used architectures for mobile hardware platforms, MobileNetV2, and study the impact of changing its topology and applying post-training quantization. We discuss the impact of the adaptations and the deployment of the model on an embedded hardware platform for face detection.