论文标题
围产期流行病学和出生队列研究中的回归不连续设计
Regression discontinuity design in perinatal epidemiology and birth cohort research
论文作者
论文摘要
回归不连续设计(RDD)是研究干预/治疗对以后健康结果的因果影响的准实验方法。它利用了一个连续测量的分配变量,其明确定义的截止变量至少在该截止位置至少部分分配给了干预/治疗。我们描述了RDD并概述了RDD在围产期流行病学和出生队列研究的背景下的应用。 在围产期和小儿流行病学中,使用RDD的研究越来越多。这些研究大多数是在教育,社会和福利政策,医疗保健组织,保险和预防计划的背景下进行的。其他主题领域包括临床相关的研究问题,冲击事件,社会和环境因素以及准则的变化。孕产妇和围产期特征(例如年龄,出生体重和胎龄)经常使用分配变量来研究新生儿护理,健康保险和补充新生儿福利的类型和强度的影响。已经使用了不同的社会经济措施来研究社会,福利和现金转移计划的影响,而出生的年龄或出生日期则是研究疫苗接种计划,特定于妊娠指南,产妇和亲子鉴定政策的影响以及新生儿基于新生儿的福利计划的影响。 RDD具有优势,包括相对较弱和可检验的假设,强大的内部有效性,直观的解释以及透明和简单的图形表示。但是,在政策和计划评估之外的稀有设置,低统计能力,有限的外部有效性(地理和特定时间特定的环境)以及其他暴露/干预措施的潜在污染中,其在出生队列研究中的使用受到了阻碍。
Regression discontinuity design (RDD) is a quasi-experimental approach to study the causal effects of an intervention/treatment on later health outcomes. It exploits a continuously measured assignment variable with a clearly defined cut-off above or below which the population is at least partially assigned to the intervention/treatment. We describe the RDD and outline the applications of RDD in the context of perinatal epidemiology and birth cohort research. There is an increasing number of studies using RDD in perinatal and pediatric epidemiology. Most of these studies were conducted in the context of education, social and welfare policies, healthcare organization, insurance, and preventive programs. Additional thematic fields include clinically relevant research questions, shock events, social and environmental factors, and changes in guidelines. Maternal and perinatal characteristics, such as age, birth weight and gestational age are frequently used assignment variables to study the effects of the type and intensity of neonatal care, health insurance, and supplemental newborn benefits. Different socioeconomic measures have been used to study the effects of social, welfare and cash transfer programs, while age or date of birth served as assignment variables to study the effects of vaccination programs, pregnancy-specific guidelines, maternity and paternity leave policies and introduction of newborn-based welfare programs. RDD has advantages, including relatively weak and testable assumptions, strong internal validity, intuitive interpretation, and transparent and simple graphical representation. However, its use in birth cohort research is hampered by the rarity of settings outside of policy and program evaluations, low statistical power, limited external validity (geographic- and time-specific settings) and potential contamination by other exposures/interventions.