论文标题

波形反演,具有数据驱动的内波的估计值

Waveform inversion with a data driven estimate of the internal wave

论文作者

Borcea, Liliana, Garnier, Josselin, Mamonov, Alexander V., Zimmerling, Jörn

论文摘要

我们研究了波动方程的一个反问题,与一系列源和接收器收集的数据估计波速(又称速度),这些数据发出了探测信号并测量所得波。速度估计的典型数学公式是在搜索速度空间上最小化数据失误的非线性最小二乘。这种方法有两个主要的障碍,这些障碍表现为目标函数的多个局部最小值:从速度到数据的映射的非线性,这占多个散射效应,以及对运动学的知识(波动速度平滑的一部分),从而导致周期循环速度。我们表明,可以使用内部波场的数据驱动估计来减轻非线性。这导致反转的性能提高了运动学的合理初步猜测。

We study an inverse problem for the wave equation, concerned with estimating the wave speed, aka velocity, from data gathered by an array of sources and receivers that emit probing signals and measure the resulting waves. The typical mathematical formulation of velocity estimation is a nonlinear least squares minimization of the data misfit, over a search velocity space. There are two main impediments to this approach, which manifest as multiple local minima of the objective function: The nonlinearity of the mapping from the velocity to the data, which accounts for multiple scattering effects, and poor knowledge of the kinematics (smooth part of the wave speed) which causes cycle-skipping. We show that the nonlinearity can be mitigated using a data driven estimate of the internal wave field. This leads to improved performance of the inversion for a reasonable initial guess of the kinematics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源