论文标题
扭曲的双层FESE和FE基超晶格
Twisted-bilayer FeSe and the Fe-based superlattices
论文作者
论文摘要
We derive BM-like continuum models for the bands of superlattice heterostructures formed out of Fe-chalcogenide monolayers: (${\bf\text I}$) a single monolayer experiencing an external periodic potential, and (${\bf\text II}$) twisted bilayers with long-range moire tunneling.为$γ$和$ M $高对称点提供了层间Moire隧道的对称派生。在本文中,我们专注于以$γ$为中心的孔波段最大值形成的摩尔乐队,并显示了具有$ c = 0 $或$ \ pm 1 $拓扑量子数字的Moire频段的可能性,而无需打破时间反向对称性。在$ c = 0 $区域中,$θ\ rightarrow 0 $(同样,在$ {\ bf \ text I} $的大型超级晶格周期的限制中,系统成为2D谐波振荡器的正方形晶格。我们将模型适合FESE,并认为它是具有可调相互作用强度的Square Hubbard模型的可行平台。
We derive BM-like continuum models for the bands of superlattice heterostructures formed out of Fe-chalcogenide monolayers: (${\bf\text I}$) a single monolayer experiencing an external periodic potential, and (${\bf\text II}$) twisted bilayers with long-range moire tunneling. A symmetry derivation for the inter-layer moire tunnelling is provided for both the $Γ$ and $M$ high-symmetry points. In this paper, we focus on moire bands formed from hole-band maxima centered on $Γ$, and show the possibility of moire bands with $C=0$ or $\pm 1$ topological quantum numbers without breaking time-reversal symmetry. In the $C=0$ region for $θ\rightarrow 0$ (and similarly in the limit of large superlattice period for ${\bf\text I}$), the system becomes a square lattice of 2D harmonic oscillators. We fit our model to FeSe and argue that it is a viable platform for the simulation of the square Hubbard model with tunable interaction strength.