论文标题

抛物线抛物线模型的绿色功能以及连续的指向聚合物

The Green's function of the parabolic Anderson model and the continuum directed polymer

论文作者

Alberts, Tom, Janjigian, Christopher, Rassoul-Agha, Firas, Seppäläinen, Timo

论文摘要

我们构建了一个常规版本的$z_β(t,x | s,y)$,该版本描述了抛物线抛物线模型(PAM)的绿色功能或基本解决方案,并在$ \ mathbb {r}^r}^{1+1} $上强迫白噪声强迫: $ \ frac {1} {2} \ partial_ {xx}z_β(t,x | s,y) +βz_β(t,x | s,y)w(t,x)$,$z_β(s,s,x | s,s,y)=δ(x-y) \ Mathbb {r} $,以及\ Mathbb {r} $的所有$β\同时。通过叠加原则,我们的构造在所有初始和终端时都可以在满足尖锐生长假设的初始或终端条件下将所有溶液的偶数耦合到PAM上。使用这种耦合,我们表明具有(次数指数增长的初始条件的PAM)接受了由限制给出的保守数量,$ \ displayStyle \ lim_ {x \ to \ pm \ pm \ pm \ infty} x^{ - 1} \ logZ__β(t,x,x,x,x,x,x)$除了证明了许多新的基本属性,以及许多新的基本属性,以及PAM和PAM的PAM和PAM以及PAM以及PAM的PAM和PAM。然后将这些特性与淬灭连续聚合物测量的存在,规律性和连续性相关。通过聚合物连接,我们还表明,对于所有$ t> s $而言,内核$(x,y)\ mapstoz_β(t,x | s,y)$严格完全是积极的,而$ t> s $和$β\ in \ mathbb {r} $。

We build a regular version of the field $Z_β(t,x|s,y)$ which describes the Green's function, or fundamental solution, of the parabolic Anderson model (PAM) with white noise forcing on $\mathbb{R}^{1+1}$: $\partial_t Z_β(t,x | s,y) =$ $\frac{1}{2}\partial_{xx} Z_β(t,x|s,y) + βZ_β(t,x | s,y)W(t,x)$, $Z_β(s,x | s,y) = δ(x-y)$ for all $-\infty < s \leq t < \infty$, all $x,y \in \mathbb{R}$, and all $β\in \mathbb{R}$ simultaneously. Through the superposition principle, our construction gives a pointwise coupling of all solutions to the PAM with initial or terminal conditions satisfying sharp growth assumptions, for all initial and terminal times. Using this coupling, we show that the PAM with a (sub-)exponentially growing initial condition admits conserved quantities given by the limits $\displaystyle \lim_{x\to \pm\infty} x^{-1}\log Z_β(t,x)$, in addition to proving many new basic properties of solutions to the PAM with general initial conditions. These properties are then connected to the existence, regularity, and continuity of the quenched continuum polymer measures. Through the polymer connection, we also show that the kernel $(x,y) \mapsto Z_β(t,x | s,y)$ is strictly totally positive for all $t>s$ and $β\in \mathbb{R}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源