论文标题
用于基于联合跨度的方面分析的层次交互式网络
A Hierarchical Interactive Network for Joint Span-based Aspect-Sentiment Analysis
论文作者
论文摘要
最近,某些基于跨度的方法实现了共同方面分析的令人鼓舞的性能,该方法首先通过检测方面边界来提取方面(方面提取),然后对跨度级别的情感(情感分类)进行分类。但是,大多数现有方法要么顺序提取特定于任务的功能,导致功能交互不足,要么以并行方式编码方面功能和情感特征,这意味着每个任务中的特征表示形式在很大程度上是彼此独立的,除了输入共享。他们俩都忽略了方面提取和情感分类之间的内部相关性。为了解决这个问题,我们在新颖地提出了一个层次交互式网络(HI-ASA),以适当地在两个任务之间进行双向交互作用,其中层次相互作用涉及两个步骤:浅层相互作用和深层相互作用。首先,我们利用交叉缝合机制选择性地将不同的特定任务特征组合为输入,以确保正确的双向相互作用。其次,将共同信息技术应用于输出层中两个任务之间的互惠学习,因此,输入和情感输入能够通过反向传播编码其他任务的特征。在三个现实世界数据集上进行的广泛实验证明了Hi-ASA优于基准。
Recently, some span-based methods have achieved encouraging performances for joint aspect-sentiment analysis, which first extract aspects (aspect extraction) by detecting aspect boundaries and then classify the span-level sentiments (sentiment classification). However, most existing approaches either sequentially extract task-specific features, leading to insufficient feature interactions, or they encode aspect features and sentiment features in a parallel manner, implying that feature representation in each task is largely independent of each other except for input sharing. Both of them ignore the internal correlations between the aspect extraction and sentiment classification. To solve this problem, we novelly propose a hierarchical interactive network (HI-ASA) to model two-way interactions between two tasks appropriately, where the hierarchical interactions involve two steps: shallow-level interaction and deep-level interaction. First, we utilize cross-stitch mechanism to combine the different task-specific features selectively as the input to ensure proper two-way interactions. Second, the mutual information technique is applied to mutually constrain learning between two tasks in the output layer, thus the aspect input and the sentiment input are capable of encoding features of the other task via backpropagation. Extensive experiments on three real-world datasets demonstrate HI-ASA's superiority over baselines.