论文标题
通过SMC $^2 $推断扩展光谱β-内酰胺酶大肠杆菌和克雷伯氏菌肺炎数据
Inference on Extended-Spectrum Beta-Lactamase Escherichia coli and Klebsiella pneumoniae data through SMC$^2$
论文作者
论文摘要
我们提出了一种新的随机模型,用于在人群中抗菌细菌的扩散,以及有效的算法,将这种模型拟合到样品数据。我们介绍了一个基于个体的流行模型,该模型的状态确定了哪些个体被细菌定植。流行病的传播率考虑了个人的位置,个体协变量,季节性和环境影响。我们的模型的状态仅部分观察到,数据包括来自每周大约两次的家庭样本的测试结果,持续19个月。由于模型的较大状态空间,将我们的模型拟合到数据上是具有挑战性的。我们开发了一种有效的SMC $^2 $算法来估计参数并比较传输速率的模型。我们通过使用基本流行病模型的规模不变性特性以计算有效的方式实施了该算法,这意味着我们可以根据数万个人而不是数百万个个人的顺序为人群定义和适合我们的模型。我们激励的应用集中在社区获得的扩展谱β-内酰胺酶产生的大肠杆菌(E. coli)和Klebsiella Pneumoniae(K。Pneumoniae)的动力学,并使用作为乌干达和马拉维项目抵抗动力的一部分收集的数据。我们推断模型的参数,并学习关键流行量,例如有效的繁殖数,流行率的空间分布,家庭聚类动力学和季节性。
We propose a novel stochastic model for the spread of antimicrobial-resistant bacteria in a population, together with an efficient algorithm for fitting such a model to sample data. We introduce an individual-based model for the epidemic, with the state of the model determining which individuals are colonised by the bacteria. The transmission rate of the epidemic takes into account both individuals' locations, individuals covariates, seasonality and environmental effects. The state of our model is only partially observed, with data consisting of test results from individuals from a sample of households taken roughly twice a week for 19 months. Fitting our model to data is challenging due to the large state space of our model. We develop an efficient SMC$^2$ algorithm to estimate parameters and compare models for the transmission rate. We implement this algorithm in a computationally efficient manner by using the scale invariance properties of the underlying epidemic model, which means we can define and fit our model for a population on the order of tens of thousands of individuals rather than millions. Our motivating application focuses on the dynamics of community-acquired Extended-Spectrum Beta-Lactamase-producing Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae), using data collected as part of the Drivers of Resistance in Uganda and Malawi project. We infer the parameters of the model and learn key epidemic quantities such as the effective reproduction number, spatial distribution of prevalence, household cluster dynamics, and seasonality.