论文标题

大型FRET模拟揭示了植物质体光收获复合物的控制参数

Large scale FRET simulations reveal the control parameters of phycobilisome light harvesting complexes

论文作者

Dodson, Emma Joy, Werren, Nicholas, Paltiel, Yossi, Gauger, Erik, Keren, Nir

论文摘要

植物质体(PBS)是吸收并将光能量转移到光化学反应中心的巨大结构。在光收集系统的范围内,PBS被认为是吸收横截面的绝佳解决方案,但相对效率低的能量传递系统。这是由于大量发色团与中间耦合距离的组合。然而,PBS系统从氧气光合作用的起源一直持续到当今的蓝细菌和红藻类,这些生物约占海洋主要生产力的一半。在这项研究中,我们使用全面的动态汉密尔顿模型通过PBS结构的子集建模了能量转移。最初,我们的方法应用于植物蛋白六聚体对,然后扩展到短杆。通过操纵结构之间的距离和角度,我们可以探测激子转移的动力学。这些模拟表明,PBS发色团网络可以在整个PBS结构上(水平和垂直)上增强能量分布。此外,发现能量传递对距离或旋转的影响相对免疫,在中间耦合距离范围内。因此,我们建议PBS为水生光合作用提供了独特的优势和灵活性。

Phycobilisomes (PBS) are massive structures that absorb and transfer light energy to photochemical reaction centers. Among the range of light harvesting systems, PBS are considered to be excellent solutions for absorption cross-sections but relatively inefficient energy transferring systems. This is due to the combination of a large number of chromophores with intermediate coupling distances. Nevertheless, PBS systems persisted from the origin of oxygenic photosynthesis to present day cyanobacteria and red algae, organisms that account for approximately half of the primary productivity in the ocean. In this study we modeled energy transfer through subsets of PBS structures, using a comprehensive dynamic Hamiltonian model. Our approach was applied, initially, to pairs of phycobilin hexamers and then extended to short rods. By manipulating the distances and angles between the structures we could probe the dynamics of exciton transfer. These simulations suggest that the PBS chromophore network enhances energy distribution over the entire PBS structure, both horizontally and vertically to the rod axis. Furthermore, energy transfer was found to be relatively immune to the effects of distances or rotations, within the range of intermediate coupling distances. Therefore, we suggest that the PBS provides unique advantages and flexibility to aquatic photosynthesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源