论文标题
多幕期个性化建议的情景自适应和自我监管模型
Scenario-Adaptive and Self-Supervised Model for Multi-Scenario Personalized Recommendation
论文作者
论文摘要
在多种情况下,多种赛车推荐专门用于检索用户的相关项目,这在工业推荐系统中无处不在。这些方案享有用户和项目中的一部分重叠,而不同方案的分布则不同。多秒建模的关键点是有效地最大程度地利用整个scenario信息,并在多种情况下为用户和项目生成自适应表示。我们总结了三个实用挑战,这些挑战无法很好地解决多幕制型建模:(1)在多种情况下缺乏细粒度和脱钩的信息传输控制。 (2)整个空间样本的开发不足。 (3)项目的多幕科代表性分解问题。在本文中,我们提出了一种情景自适应和自我监督(SASS)模型,以解决上述三个挑战。具体而言,我们使用场景自适应门单元设计了一个多层场景自适应转移(ML-SAT)模块,以相当细粒度且脱钩的方式从整个场景中选择和融合有效的传输信息。为了充分利用整个空间样品的功能,引入了包括预训练和微调在内的两阶段训练过程。预训练阶段基于场景监督的对比学习任务,并从标记和未标记的数据空间中绘制的培训样本。该模型都是在用户端和项目方面对称创建的,因此我们可以在不同情况下获得项目的区分表示。公共和工业数据集的广泛实验结果证明了SASS模型比最先进的方法的优越性。该模型还可以在在线A/B测试中平均每个用户的观看时间提高8.0%以上。
Multi-scenario recommendation is dedicated to retrieve relevant items for users in multiple scenarios, which is ubiquitous in industrial recommendation systems. These scenarios enjoy portions of overlaps in users and items, while the distribution of different scenarios is different. The key point of multi-scenario modeling is to efficiently maximize the use of whole-scenario information and granularly generate adaptive representations both for users and items among multiple scenarios. we summarize three practical challenges which are not well solved for multi-scenario modeling: (1) Lacking of fine-grained and decoupled information transfer controls among multiple scenarios. (2) Insufficient exploitation of entire space samples. (3) Item's multi-scenario representation disentanglement problem. In this paper, we propose a Scenario-Adaptive and Self-Supervised (SASS) model to solve the three challenges mentioned above. Specifically, we design a Multi-Layer Scenario Adaptive Transfer (ML-SAT) module with scenario-adaptive gate units to select and fuse effective transfer information from whole scenario to individual scenario in a quite fine-grained and decoupled way. To sufficiently exploit the power of entire space samples, a two-stage training process including pre-training and fine-tune is introduced. The pre-training stage is based on a scenario-supervised contrastive learning task with the training samples drawn from labeled and unlabeled data spaces. The model is created symmetrically both in user side and item side, so that we can get distinguishing representations of items in different scenarios. Extensive experimental results on public and industrial datasets demonstrate the superiority of the SASS model over state-of-the-art methods. This model also achieves more than 8.0% improvement on Average Watching Time Per User in online A/B tests.