论文标题
supface:用软玛克斯近似学习面部识别
SubFace: Learning with Softmax Approximation for Face Recognition
论文作者
论文摘要
基于软马克斯的损耗函数及其变体(例如,界面,圆顶和弧形)可显着改善野生不受约束场景中的面部识别性能。这些算法的一种常见实践是对嵌入特征和线性转换矩阵之间的乘法进行优化。但是,在大多数情况下,基于传统的设计经验给出了嵌入功能的尺寸,并且在给出固定尺寸时,使用该功能本身提高性能的研究较少。为了应对这一挑战,本文提出了一种称为subface的软关系近似方法,该方法采用了子空间功能来促进面部识别的性能。具体而言,我们在训练过程中动态选择每个批次中的非重叠子空间特征,然后使用子空间特征近似基于SoftMax的损失之间的完整功能,因此可以显着增强深层模型的可区分性,以提高面部识别。在基准数据集上进行的全面实验表明,我们的方法可以显着提高香草CNN基线的性能,这强烈证明了基于利润率的损失的子空间策略的有效性。
The softmax-based loss functions and its variants (e.g., cosface, sphereface, and arcface) significantly improve the face recognition performance in wild unconstrained scenes. A common practice of these algorithms is to perform optimizations on the multiplication between the embedding features and the linear transformation matrix. However in most cases, the dimension of embedding features is given based on traditional design experience, and there is less-studied on improving performance using the feature itself when giving a fixed size. To address this challenge, this paper presents a softmax approximation method called SubFace, which employs the subspace feature to promote the performance of face recognition. Specifically, we dynamically select the non-overlapping subspace features in each batch during training, and then use the subspace features to approximate full-feature among softmax-based loss, so the discriminability of the deep model can be significantly enhanced for face recognition. Comprehensive experiments conducted on benchmark datasets demonstrate that our method can significantly improve the performance of vanilla CNN baseline, which strongly proves the effectiveness of subspace strategy with the margin-based loss.