论文标题

在粘性稳定线性流中的球体上的二阶惯性力和扭矩

Second-order inertial forces and torques on a sphere in a viscous steady linear flow

论文作者

Candelier, Fabien, Mehaddi, Rabah, Mehlig, Bernhard, Magnaudet, Jacques

论文摘要

我们将完整的二阶惯性校正计算为瞬时力和扭矩作用在一个小球形刚性粒子上,以一般的稳定线性流动不稳定地移动。这是通过使用匹配的渐近扩展并在坐标系中与背景流程共同移动的问题来实现的。假定流体速度梯度的影响很小,但在身体和流体之间的速度差异上占主导地位,这使得结果与几乎中性浮力的颗粒基本上相关。外部溶液(一阶在短时间内负责Basset-Boussinesq历史力量,而剪切诱导的力(例如Saffman Lift Rellove longiwe to)通过流动依赖性的张力核表示。二阶内溶液为力和扭矩带来了许多不同的贡献。有些与粒子和流体之间的相对平移或角加速度成正比,而另一些则采用背景流的旋转/应变速率的产物形式以及粒子和流体之间的相对平移或角速度。添加外部和内部贡献,恢复已知的添加质量力或自旋诱导的升力力,并揭示了涉及背景流的旋转/应变速率的新效果。所得的力和扭矩方程提供了经典的贝塞式 - 贝索斯孔方程的合理扩展,该方程融合了载有流量的不稳定和速度梯度所产生的所有一阶和二阶流体惯性效应。

We compute the full set of second-order inertial corrections to the instantaneous force and torque acting on a small spherical rigid particle moving unsteadily in a general steady linear flow. This is achieved by using matched asymptotic expansions and formulating the problem in a coordinate system co-moving with the background flow. Effects of the fluid-velocity gradients are assumed to be small, but to dominate over those of the velocity difference between the body and fluid, which makes the results essentially relevant to nearly neutrally buoyant particles. The outer solution (which at first order is responsible for the Basset-Boussinesq history force at short time and for shear-induced forces such as the Saffman lift force at long time) is expressed via a flow-dependent tensorial kernel. The second-order inner solution brings a number of different contributions to the force and torque. Some are proportional to the relative translational or angular acceleration between the particle and fluid, while others take the form of products of the rotation/strain rate of the background flow and the relative translational or angular velocity between the particle and fluid. Adding the outer and inner contributions, the known added-mass force or the spin-induced lift force are recovered, and new effects involving the rotation/strain rate of the background flow are revealed. The resulting force and torque equations provide a rational extension of the classical Basset-Boussinesq-Oseen equation incorporating all first- and second-order fluid inertia effects resulting from both unsteadiness and velocity gradients of the carrying flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源