论文标题

使用EM算法的时间序列聚类,用于线性高斯空间模型的混合物

Time Series Clustering with an EM algorithm for Mixtures of Linear Gaussian State Space Models

论文作者

Umatani, Ryohei, Imai, Takashi, Kawamoto, Kaoru, Kunimasa, Shutaro

论文摘要

在本文中,我们考虑在建模每个群集时(即基于模型的时间序列群集)时考虑一组单个时间序列的任务。该任务需要一个具有足够灵活性的参数模型来描述各个时间序列中的动力学。为了解决这个问题,我们提出了一种基于模型的时间序列聚类方法,该方法具有线性高斯状态空间模型的混合物,具有很高的灵活性。提出的方法对混合模型使用一种新的期望最大化算法来估计模型参数,并使用贝叶斯信息标准确定簇的数量。模拟数据集上的实验证明了该方法在聚类,参数估计和模型选择中的有效性。该方法应用于通常用于评估时间序列聚类方法的实际数据集。结果表明,所提出的方法产生的聚类结果比使用以前的方法获得的精确或更准确。

In this paper, we consider the task of clustering a set of individual time series while modeling each cluster, that is, model-based time series clustering. The task requires a parametric model with sufficient flexibility to describe the dynamics in various time series. To address this problem, we propose a novel model-based time series clustering method with mixtures of linear Gaussian state space models, which have high flexibility. The proposed method uses a new expectation-maximization algorithm for the mixture model to estimate the model parameters, and determines the number of clusters using the Bayesian information criterion. Experiments on a simulated dataset demonstrate the effectiveness of the method in clustering, parameter estimation, and model selection. The method is applied to real datasets commonly used to evaluate time series clustering methods. Results showed that the proposed method produces clustering results that are as accurate or more accurate than those obtained using previous methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源