论文标题

在WSN中进行合作定位的分布式缩放的近端ADMM ADMM算法

Distributed Scaled Proximal ADMM Algorithms for Cooperative Localization in WSNs

论文作者

Zhang, Mei, Wang, Zhiguo, Yin, Feng, Shen, Xiaojing

论文摘要

无线网络中的分布式合作定位是一个具有挑战性的问题,因为它通常需要解决大规模的非凸和非平滑优化问题。在本文中,我们将经典的合作定位问题重新制定为一个平稳且受约束的非凸最小化问题,而其损失函数在节点上可以分离。通过利用重新制定的结构,我们提出了两种新颖的尺度近端交替方向方法(SP-ADMM)算法,可以以分布式方式实现。与经典的半准编程松弛技术相比,所提出的算法可以提供更准确的位置估计值,其计算复杂性显着降低。相关的理论分析表明,我们的算法{\ blue全球融合到重新计算问题的kkt点}和原始问题的关键点,具有有利的sublinear $ \ mathcal {o} \ left(1/t \ weft(1/t \ right)$ convergence $ contragence,其中$ t $ t $是itt $ itteeration计数器。数值实验一直表明,在所有测试的情况下,所提出的SP-ADMM算法在本地化准确性和计算复杂性方面优于最新方法,网络大小,锚固量,平均邻居数量,邻居的平均数量和噪声方差水平。

Distributed cooperative localization in wireless networks is a challenging problem since it typically requires solving a large-scale nonconvex and nonsmooth optimization problem. In this paper, we reformulate the classic cooperative localization problem as a smooth and constrained nonconvex minimization problem while its loss function is separable over nodes. By utilizing the structure of the reformulation, we propose two novel scaled proximal alternating direction method of multipliers (SP-ADMM) algorithms, which can be implemented in a distributed manner. Compared with the classic semi-definite programming relaxation techniques, the proposed algorithms can provide more accurate position estimates with significantly lower computation complexity. The associated theoretical analysis shows that our algorithms {\blue globally converge to a KKT point} of the reformulated problem and a critical point of the original problem, with a favorable sublinear $\mathcal{O}\left(1/T\right)$ convergence rate, where $T$ is the iteration counter. Numerical experiments have consistently shown that the proposed SP-ADMM algorithms are superior to state-of-the-art methods in terms of localization accuracy and computational complexity across all tested scenarios, varying network size, number of anchors, average number of neighbors, and noise variance levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源