论文标题

FED-FSNET:减轻非I.I.D。通过模糊综合网络联合学习

Fed-FSNet: Mitigating Non-I.I.D. Federated Learning via Fuzzy Synthesizing Network

论文作者

Guo, Jingcai, Guo, Song, Zhang, Jie, Liu, Ziming

论文摘要

联合学习(FL)最近成为一个有希望的保护分布式机器学习框架。它旨在通过在边缘设备上进行本地进行分布式培训,并将本地模型汇总到一个全球模型中,而没有集中式的原始数据共享在云服务器中进行协作学习共享的全局模型。但是,由于跨越边缘设备的局部数据异质性(非I.I.D。DATA)的大型局部数据,FL可能很容易获得一个全球模型,该模型可以在本地数据集上产生更换的梯度,从而降低了模型性能,甚至降低了在训练过程中遭受非连接的障碍。在本文中,我们提出了一个新颖的FL训练框架,使用适当设计的模糊合成网络(FSNET)来减轻非i.i.i.d。 fl源。具体而言,我们在云服务器中维护一个边缘无形的隐藏模型,以估计全局模型的方向感知倒置。然后,隐藏的模型可以模糊地合成几个模拟I.I.D.数据示例(示例特征)仅在全局模型上进行,边缘设备可以共享,以促进FL训练,以更快,更好的收敛性。此外,由于综合过程既不涉及对本地模型的参数/更新的访问,也不涉及分析各个本地模型输出,因此我们的框架仍然可以确保FL的隐私。几个FL基准的实验结果表明,我们的方法可以显着减轻非I.I.D。发行并获得其他代表性方法的更好绩效。

Federated learning (FL) has emerged as a promising privacy-preserving distributed machine learning framework recently. It aims at collaboratively learning a shared global model by performing distributed training locally on edge devices and aggregating local models into a global one without centralized raw data sharing in the cloud server. However, due to the large local data heterogeneities (Non-I.I.D. data) across edge devices, the FL may easily obtain a global model that can produce more shifted gradients on local datasets, thereby degrading the model performance or even suffering from the non-convergence during training. In this paper, we propose a novel FL training framework, dubbed Fed-FSNet, using a properly designed Fuzzy Synthesizing Network (FSNet) to mitigate the Non-I.I.D. FL at-the-source. Concretely, we maintain an edge-agnostic hidden model in the cloud server to estimate a less-accurate while direction-aware inversion of the global model. The hidden model can then fuzzily synthesize several mimic I.I.D. data samples (sample features) conditioned on only the global model, which can be shared by edge devices to facilitate the FL training towards faster and better convergence. Moreover, since the synthesizing process involves neither access to the parameters/updates of local models nor analyzing individual local model outputs, our framework can still ensure the privacy of FL. Experimental results on several FL benchmarks demonstrate that our method can significantly mitigate the Non-I.I.D. issue and obtain better performance against other representative methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源