论文标题

减少Pinn:基于集成的物理信息的神经网络,用于硬质量

Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for Stiff ODEs

论文作者

Nasiri, Pouyan, Dargazany, Roozbeh

论文摘要

物理知识的神经网络(PINNS)最近由于解决前进问题和反向问题的能力而受到了很多关注。为了训练与PINN相关的深层神经网络,通常使用不同损失项的加权总和构建总损耗函数,然后尝试最大程度地减少。这种方法通常会成为解决刚性方程式的问题,因为它不能考虑自适应增量。许多研究报告说,PINN的性能不佳及其在模拟僵硬的普通差分条件(ODE)条件下模拟僵硬的化学活动问题方面的挑战。研究表明,刚度是PINN在模拟僵硬动力学系统中失败的主要原因。 在这里,我们通过提出减少损失函数的弱形式来解决这个问题,这导致了新的PINN结构(进一步命名为还原的Pinn),该结构利用了降低的集成方法来使Pinn能够求解僵硬的化学动力学。所提出的还原细菌可以应用于涉及僵硬动力学的各种反应扩散系统。为此,我们将初始价值问题(IVP)转换为它们的等效积分形式,并使用物理知识的神经网络求解所得的积分方程。在我们派生的基于积分的优化过程中,只有一个术语,而没有明确合并与普通微分方程(ODE)和初始条件(ICS)相关的损失项。为了说明减少细菌的功能,我们用它来模拟多个僵硬/轻度的二阶ODE。我们表明,还原细菌可准确捕获刚性标量颂的溶液。我们还针对线性ODE的硬质系统验证了还原的细菌。

Physics-informed neural networks (PINNs) have recently received much attention due to their capabilities in solving both forward and inverse problems. For training a deep neural network associated with a PINN, one typically constructs a total loss function using a weighted sum of different loss terms and then tries to minimize that. This approach often becomes problematic for solving stiff equations since it cannot consider adaptive increments. Many studies reported the poor performance of the PINN and its challenges in simulating stiff chemical active issues with administering conditions of stiff ordinary differential conditions (ODEs). Studies show that stiffness is the primary cause of the failure of the PINN in simulating stiff kinetic systems. Here, we address this issue by proposing a reduced weak-form of the loss function, which led to a new PINN architecture, further named as Reduced-PINN, that utilizes a reduced-order integration method to enable the PINN to solve stiff chemical kinetics. The proposed Reduced-PINN can be applied to various reaction-diffusion systems involving stiff dynamics. To this end, we transform initial value problems (IVPs) to their equivalent integral forms and solve the resulting integral equations using physics-informed neural networks. In our derived integral-based optimization process, there is only one term without explicitly incorporating loss terms associated with ordinary differential equation (ODE) and initial conditions (ICs). To illustrate the capabilities of Reduced-PINN, we used it to simulate multiple stiff/mild second-order ODEs. We show that Reduced-PINN captures the solution accurately for a stiff scalar ODE. We also validated the Reduced-PINN against a stiff system of linear ODEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源