论文标题

在不同高度探测的Alma子带探测的太阳能球体中横波的传播

Propagation of transverse waves in the solar chromosphere probed at different heights with ALMA sub-bands

论文作者

Gómez, Juan Camilo Guevara, Jafarzadeh, Shahin, Wedemeyer, Sven, Szydlarski, Mikolaj

论文摘要

Atacama大毫米/亚毫米阵列(ALMA)为我们提供了一种出色的诊断工具,用于研究太阳能球的动力学,尽管目前一次是通过单个接收器带。每个Alma带由四个由多个光谱通道组成的子带组成。然而,迄今为止,光谱域已被忽略而不是确保最佳成像,因此时间序列观测大多被限于全带数据产品,从而将研究限制为单个色球层层。在这里,我们报告了动态事件(即波传播)的第一个观察结果,该事件的ALMA频段3数据(以3 \,mm; 100 \,GHz为中心)分为下部和上侧带。原则上,这种方法旨在绘制太阳大气中略有不同的层。侧带数据与太阳能ALMA管道(SOAP)一起降低,从而导致每个侧带的亮度温度图的时间序列。通过对磁性纯粹的声波占主导地位的磁性安静区域的相分析,两个侧带之间的平均高度估计为$ 73 \ pm16 $ 〜km。此外,我们通过小波相分析在两个大气高度的振荡之间进行了小尺度明亮结构中横向波的传播。我们发现6 \%的海浪站立,而54 \%和46 \%的剩余波则分别向上和向下传播,绝对传播速度按$ \ \ \ \ \ \ \ \ \ 96 $〜km/s的顺序传播,导致平均能量通量为$ 3800 $ 3800 $ \,w/m $ $ $ $ $^2 $。

The Atacama Large Millimeter/sub-millimeter Array (ALMA) has provided us with an excellent diagnostic tool for studies of the dynamics of the Solar chromosphere, albeit through a single receiver band at one time presently. Each ALMA band consists of four sub-bands that are comprised of several spectral channels. To date, however, the spectral domain has been neglected in favour of ensuring optimal imaging, so that time-series observations have been mostly limited to full-band data products, thereby limiting studies to a single chromospheric layer. Here, we report the first observations of a dynamical event (i.e. wave propagation) for which the ALMA Band 3 data (centred at 3\,mm; 100\,GHz) is split into a lower and an upper sideband. In principle, this approach is aimed at mapping slightly different layers in the Solar atmosphere. The side-band data were reduced together with the Solar ALMA Pipeline (SoAP), resulting in time series of brightness-temperature maps for each side-band. Through a phase analysis of a magnetically quiet region, where purely acoustic waves are expected to dominate, the average height difference between the two side-bands is estimated as $73\pm16$~km. Furthermore, we examined the propagation of transverse waves in small-scale bright structures by means of wavelet phase analysis between oscillations at the two atmospheric heights. We find 6\% of the waves to be standing, while 54\% and 46\% of the remaining waves are propagating upwards and downwards, respectively, with absolute propagating speeds on the order of $\approx96$~km/s, resulting in a mean energy flux of $3800$\,W/m$^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源