论文标题
多尺度多目标域适应性角度闭合分类
Multi-Scale Multi-Target Domain Adaptation for Angle Closure Classification
论文作者
论文摘要
深度学习(DL)通过前段光学相干断层扫描(AS-OCT)图像在角度闭合分类方面取得了重大进展。这些AS-OCT图像通常是通过不同的成像设备/条件来获取的,这会导致基本数据分布的巨大变化(称为“数据域”)。此外,由于实用的标签困难,某些域(例如设备)可能没有任何数据标签。结果,在一个特定域(例如,特定设备)上训练的深层模型很难适应,因此在其他域(例如其他设备)上的性能很差。为了解决此问题,我们提出了一个多目标域的适应范式,以将在一个标记的源域上训练的模型转移到多个未标记的目标域。具体而言,我们提出了一种新型的多尺度多目标域对抗网络(M2DAN),以进行角度闭合分类。 M2DAN进行多域对抗性学习,以提取域不变特征,并开发了一个多尺度模块,用于捕获AS-OCT图像的本地和全局信息。基于这些域不变的特征在不同尺度上,在源域上训练的深模型即使在这些域中没有任何注释,也能够在多个目标域上对角度闭合进行分类。对现实世界AS-OCT数据集进行的广泛实验证明了该方法的有效性。
Deep learning (DL) has made significant progress in angle closure classification with anterior segment optical coherence tomography (AS-OCT) images. These AS-OCT images are often acquired by different imaging devices/conditions, which results in a vast change of underlying data distributions (called "data domains"). Moreover, due to practical labeling difficulties, some domains (e.g., devices) may not have any data labels. As a result, deep models trained on one specific domain (e.g., a specific device) are difficult to adapt to and thus may perform poorly on other domains (e.g., other devices). To address this issue, we present a multi-target domain adaptation paradigm to transfer a model trained on one labeled source domain to multiple unlabeled target domains. Specifically, we propose a novel Multi-scale Multi-target Domain Adversarial Network (M2DAN) for angle closure classification. M2DAN conducts multi-domain adversarial learning for extracting domain-invariant features and develops a multi-scale module for capturing local and global information of AS-OCT images. Based on these domain-invariant features at different scales, the deep model trained on the source domain is able to classify angle closure on multiple target domains even without any annotations in these domains. Extensive experiments on a real-world AS-OCT dataset demonstrate the effectiveness of the proposed method.