论文标题
在可编程光学晶格中用超电原子进行玻色子采样
Boson sampling with ultracold atoms in a programmable optical lattice
论文作者
论文摘要
对于古典计算机来说,来自量子分布的采样可能很难,但可以通过嘈杂的中间尺度量子设备有效地执行。很难采样的分布的主要示例是由$ n $相同的玻色子颗粒所穿过的线性干涉仪的输出态给出的。在这里,我们提出了一种方案,以在极化合成的光学晶格中实现具有超低原子的玻色子采样机。我们通过在四模式干涉仪中揭示了两个肺泡原子的Hong-Ou-mandel干扰,从而在实验中证明了这种机器的基本构建块。为了估算大型$ n $的采样率,我们基于一个基于粒子损失但不包括技术错误的主方程的理论模型。我们的结果表明,原子采样器有可能用$ n \ gtrsim 40 $获得当今最佳超级计算机的量子优势。
Sampling from a quantum distribution can be exponentially hard for classical computers and yet could be performed efficiently by a noisy intermediate-scale quantum device. A prime example of a distribution that is hard to sample is given by the output states of a linear interferometer traversed by $N$ identical boson particles. Here, we propose a scheme to implement such a boson sampling machine with ultracold atoms in a polarization-synthesized optical lattice. We experimentally demonstrate the basic building block of such a machine by revealing the Hong-Ou-Mandel interference of two bosonic atoms in a four-mode interferometer. To estimate the sampling rate for large $N$, we develop a theoretical model based on a master equation that accounts for particle losses, but not include technical errors. Our results show that atomic samplers have the potential to achieve quantum advantage over today's best supercomputers with $N \gtrsim 40$.