论文标题
边彩色的同构,路径和二元性
Edge-coloured graph homomorphisms, paths, and duality
论文作者
论文摘要
我们提出了二元定理的边缘色类似物,用于及时的比赛和导向路径。给定边缘色路径$ p $,其边缘交替蓝色和红色,我们构造了一个边彩色的图形$ d $,因此对于任何边缘色$ g $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ p \ to g \ leftrightArrow g \ g \ not \ to d to d to d $ $
We present a edge-coloured analogue of the duality theorem for transitive tournaments and directed paths. Given a edge-coloured path $P$ whose edges alternate blue and red, we construct a edge-coloured graph $D$ so that for any edge-coloured graph $G$ $$ P \to G \Leftrightarrow G \not\to D. $$ The duals are simple to construct, in particular $|V(D)|=|V(P)|-1$.